ED 066 878

AUTHOR
TITLE

INSTITUTION
REPORT NO
PUB DATE
NOTE

EDRS PRICE
DESCRIPTORS

IDENTIFIERS

ABSTRACT

DOCUMENT RESUME

EM 010 158

Leaf, william A.

SLIP: A symmetric List Processing Language in
PL-I.

Educational Testing Service, Princeton, N.J.
RB-71-52

Sep 71

T4p.

Mr-$0.65 HC-$3.29

Computer Science; *Data Processing; *Electronic Data
Processing; *Programing Languages

PL 1; SLIP; *Symmetric List Processing

SLIP (Symmetric List Processing) is a list processing

system designed to be added to a higher order language (PL-1 in this
version) so that the user has available to him list processing
powers. The primary value of such a system is its data handling
power. Through SLIP, one can set up lists of data, scan those lists,
alter them, and read or write them via external devices with minimal
concern for space allotment, data types, or data structure
organization. It is possible, for example, to write general programs
which create and rmanipulate list structures whose shape, size, and
contents are completely defined only during execution, by the shape,
size, and contents of the data. SLIP exists as a set of library
subroutines which do the actual manipulations. Thus the user simply
writes a normal PL-1 program in which some statements refer to SLIP
functions. These subroutines are explained here. (Author/JK)

D

ED 066878
TODPMNOMD
Z = D

.M UI0 IS

SLIP: A SYMMETRIC LIST PROCESSING LANGUAGE [u PL-I

William A. Leaf

Carnegie-Mellon University

U.S. OEPARTMENT DF HEALTH,
EQUCATION & WELFARE
OFFICE OF EDUCATION

THIS DOCUMENT Has BEEN REPRO-
DUCED EXACTLY AS RECEIVED FROM
THE PERSON (8 OFSANIZATION ORIG-
INATING IT. pOIr = OF VIEW OR OPIN-
IONS STATED- DC NOT NECESSARILY
REPRAESENT OFFICIAL OFFICE OF EDU-
CATION POSITION OR POLICY

Educational Testing Service
Princeton, New Jersey
September 1971

|

}B=-T1-52

SLIP: A Symmetric List Processing language in PL-I
William A. Leaf

Carnegie~Mellon University

Introduction

This description of SLIP is written for the reader who has at least
a basic knowledge of PL-I termirology, conventions, and programmi.g.

Since this SLIP (and PL-I) are written for IBM-360 computers, the
machine-oriented details in the followving pages are 360 details. As much
detail as possible has been proviled so that the interested reader can
understand the physical representation »f SLIP cells and lists. The uscr
interested only in the features of She language can skip such hardware
information without loss of understanding.

The version of SLIP descrihed here is written for the 0S8 version of
PL-I, specifically version M, release 1{ of the PL—I(F) compilzar. Only
minor changes in the routines are necessary to adapt them to other releases

or versions of the (F) compiler.

SLIP: A Symmetric List Processing language in PL-I
William A. Leaf*

Carnegie-Mellon University

I
)
L/ General Features of SLIP

SLIP is a list processing system originally developed by Joseph
| Weilzenbaum (1965). It is designed to be added to a higher order language,
PL-I in this version, so that the user has available to him, in addition to

thie host algebraic language, list processing powers similar to those of

a4

languages like IPL-V, LISP, or FLPL.

The primary value of such a system is its data handling power. Through
SLIP, one can set up lists of data, scan'those lists, alter them, and read
or write them via external devices with minimal concern for space allotment,
data types, or data structure organization. It is possible, for example, to
write general programs which create and manipulace list structures whose
shape, size, and contents are completely defined only during execution, by
the shape, size, and contents of the data.

SLIP exists as a set bf library subroutines which do the actual manipu-
lations. Trus the user simply writes a normal PL-I program in which some
statements refer to SLIP functions. The user has access to 2ll the normal
facilities of PL-I and, in addition, has the power to create and manipulate
data lists.

Weizenbaum orginally wrote SLIP to be imbedded in FORTRAN; since then,
it has been adapted to be used with other algebraic languages (e.g., MAD;
see Johnson, Rosin, & Leaf, 1967) and has been aaapted at least once to

PL-I (Johnson, 1968).

*This work was done while the author was a Visiting Research Psychologist
at Educational Testing Service.

ERIC 3

The present version of SLIP differs from the earlier versions in many j
respects. The major reason for this 1s the large diflerence between
FORTRAN and PL~I. The latter language has a much wider variety of data
types than the former, and it seem:d important to mirror this flexibility
in SLIP.

Thus the form of data storage has been changed slightly to fit with
PL-I conventions. Many of the functions in SLIP now do slightly different
things, in different ways, than they did in the earlier versions. And the
names of the functions have sometimes been changed, primarily to improve
the mnemonics but also to take advantage of the fact that PL-I allows
T~-character names. |

SLIP's overall powers and purposes have not been changed, however.

The basic features of the language can be briefly summarized under four

headings: 1list creation and manipulation, list scanning, description lists,
and list input-output.

List creation and manipulation. Lists may contain any number of data

cells and sublists (which have all the flexibility of main lists). Lists
may be created (via the fuiction LIST), copied (COPYLST), or erased
(ERASI3T). New data may be sdded to a list (NEWIOP, NEWBOT) or they may
replace old data (SUBTOP, SUBBOT, REPLACE). O0ld data may be retri :ed
(TOP, BOT, DATUM) or removed from lists (POPTOP, POPBOT, REMOVE). The
entire contents of a list may be moved to another list (MOVEL, MOVER) or
erased (EMI'YLST).

List scanning. The functions described above are best for manipulating

data at the top or bottom of a list. By means of SLIP's reader facility,

however, cne can scan through a list or its sublists for data, then remove,
réplace, or retrieve the data as desired. Readers are pointers which may
be moved up or down a list (via the advance functions, ADVITR, AL/STL,
ADVINR, and ADVLNL) to find any kind of datum or alparticular kind of
datum.

A particularly useful function, SEARCH, will scan a 1l.st's deta for
a particular datum.

Description lists. It is often useful to athach to a list a set of

descriptors which identify the nature of the list (its data types or its
importance to the program). Each 1ist may have a description list which
contains such information in Attribute Dimension-Value pairs. Specialized
functions exist which conveniently manip.ilate such descriptive information.
For example, NEWVAL stores the value for a particular éttribute, ITSVAL
retrieves the current value, and NOVAL removes the gttribute and its value
fiom the description list.

List input-output. Often the most economical way to create complex

lists is to prepare them as input for the running program. Two functions,
READLST and PRNTLST, exist which can read and write lists ol any complexity.

The output from PRNTLST is readable by READLST, so that one can save lists

from day to day or use one program to create a complex list for another.

Organizaticn of SLIP Lists

Lists are made up of a mai.. cell, or header, and any number of data
cells (see below for a description of the dats types which may be stored in
cells). The cells are linked together linearly and symmetrically. That is,
the header is linked to the first data cell, the first is linked to the second

cell, « . . , the next-to-last cell is linked to the last cell, and the

K
L4

3

e

last cell is linked to the header. In addition, the header is linked back
to the last cell and all other cells are linked back to the preceding cell
on the list. Thus the keyword symmetric: from any point on the list, it

is pogssible to use the chain of links to go either forward or backward to
any other point on the list. (The terminology for locating cells on a

list relatire to other cells on the list can be confusing. In normal linear

lirts, data cells are either above or below each other, and the header cell

is the top of the list. These terms are still used in SLIP, but since lists
are symmetric, a conventional meaning for "above'" and "below" nust be agreed
upon. Each cell has two links; conventionally, the one called "LNKR" (link
EEEEE) points forward to the cell below the current cell. The link left

("LNKL") points upward or backward to the preceding cell. Exceptions occur

around the header, but it is traditionally regarded as the top of the list,
and the cell to the "left" of the header is regarded as the bottom of the
list.)

Data cells may contain data such as numbers or bit or character strings.
They may also contain pointers to other lists. Thus any list may have any
number of sublists, which in turn may have sublists of their own, etc. A
list may be its own sublist. Thus it is possible to create extremely c-m-
ptex list structures.

A list may also have a description list. In IPL-V, description lists

were usually seen as containing descriptive information about the nature
of the main list, information completely separate from its contents. 1In
SLIP, one may use the description lists for the same purposes; there are

specialized subroutines designed to conveniently create and scan such lists.

b

Or one can use a description list fcr any purpose desired; practically,

o

description lists have all the flexibility of organization and use as

e

other lists, including the ability to have description lists.

SLIP Cells

Figure 1 gives the schematic form f'or any SLIP cell. Because PL-I
allows data of different physical lengths, the actual length of a cell is
determined by its datum. Each ce.”. is made up of a two-word "links" portion

followed by the datum.

SLIP field IID LNKTL IMARKI LNKR I datum

By—te |O l 2 5')-l | 5 6 —(l8ooo lH.l'l
Figure 1. OJtorage .epresentation of a typical SLIP cell.

The first byte of the cell {which always segins on a fullword boundary)
contains the ID which identifies the type of datum contained in the cell;

currently, ID values of 1 to 13 are meaningful (see below). The rest of the

first word (bytes 1-3) 1is the lirk left which points to the next hizher cell
on the same 173t. The second word begins with a l-byte MARK portion. It is
unused by SLIP, but may be used by the programier to identify particula-
cells--for example, during a searching.or scanning operation. The MARK is
initially set to O; it may be given any value from O to 255. Bytes 5-7 of

the second word (ILNKR) contain the link to the next lower cell on the list.
Both LNKR and INKL are machine addresses corresponding to PL-I pointer

variables.

-6~

a
ID DATUM Type
1 vixed binary (15,0) (defaul’c;
2 fixed binary (31,0) (maximum
3 float binary (21g . (defaultg
N float binary (53 (maximum
5 fixed decimal (5,0) (default)
6 fixed decimal (15,0) (maximum)
7 float decimal (6) (defaultg
8 float decimal (16) (maximum
9 character string (< 256)

10 bit string (< 2048)

11 name of sublist (pointer variable)

12 header of list (8-byte datum)containing a
description list name (pointer variable)
and a reference counter (binary integer)

13 reader cell

Figure 2. Allowsble SLIP data types and their corresponding
SLIP IDs. Whiie only codes 1-11 are strictly data, codes 12 and 13
are included in this table for completeness. :

aThe parenthesized numbers represent the length of the datum
and, if present, the scale factcr.

Header cells (ID = 12). The datum portion of a header cell is made up

of two words. The first word contains a pointer to the list's description
list, if any. The second word is a binary integer whose value is the list's

reference counter. The reference counter tallies the number of times the

list has been mentioned on other lists as a sublist or a description list.
The tally is extremely important in telling SLIP if it is all right to erase
& list or if the list cannot be erased because it is referenced by other

valid lists. (See Space Managing below for more details.)

Reader cells (ID = l;l- Reader cells are special apilication cells used

by the reader mechanisms for scanning list structures. They cannot be used

8

themselves as List items. (See The Reader Facility be Low for a compleb.

degeription,)

Data cells (ID - 1 to ll). PL-1 has a very wide range of data Lyprn--

binary and decimal integer and {loating voint numbers, complex numbers,
puinter and offset variables, bit and character strings, and pound sterling
values, for example--but a certain ‘nflexibility in mixing data types. The
11 data types actually allowed in SLIP cells represent a compromise intended
to give the user the freedom to use as many meaningtmlly different data
types as possible. Some data types are omitted completely, such as offnet
variables and complex variables; they are the ones which seem to have the
least value to SLIP programmers.

Binary fixed point numbers, in version 4 of PL-I, are =2ll stored in
full computer words regardless of precision. SLIP allows the default
p.ecision (15,05 ID = 1) and the maximum precision (31,0; ID - 2). (Pre-
cision figures in PL-I definitions are in terms of the base used. Thus =
fixed binary number of default precision allows 15 binary placec; this ic

approximately equivalent to the default precision of fixed decimal numbers,

which is 5 decimal digits.)

Fixed decimal numbers in PL-I are stored internally as decimal digits
plus a sign. Such numbers may vary in length from 1 byte (precision - 1)
to 2 words (precision = 15). SLIP allows the default precision (5,0;
ID = 5) and the maximum (15,0; ID = 6).

Floating point numbers, either binary or decimal, are all stored in

the 36C as floating hexadecimal numbers o2 either 1 or 2 words in length.

Because PL-I distinguishes between float binary and float decimal, both

-8-

are allowed separately in SLIP. The default precisions of float binary
(21; ID = 3) and float (ecimal (6; ID = 7) are equivalent; each is 1 word
long. Also allowed are the maximum precisions for float binary (53; ID =
L) and float decimal (165 ID = 8); each is 2 words long.

Strings in PL-I consist of two parts: a two-word Dope Vector and the
string itself. The Dope Vector contains the address of the string in the
first word and the actual and maximum possible lengths of the string in
the second word (the two lengths may be different in the case of variable
length strings). Character strings are stored with 1 character per byte;
bit strings are stored with 8 bits per byte. In a SLIP data cell, a
string is stored with the Dope Vector in the first 2 datum words and the
string itself in the following words. All strings are stored as if they
are of variable length; the maximum length Tor any string is the smallest
number of full words needed to store the actual string.

In data cells, strings may be up to 256 characters in len,th (ID = 9)
or 2048 bits in length (ID = 10).

Sublist names (ID = 11) are actually pointer variables; these are 1
word long. TFor a pointer variable to be the name of r sublist, its value
must be the address of the sublist's header.

SLIP cells are all made up of & round number of computer words, even
when the datum dces not require the entire space (as for ID =.5 and for
many cases with ID = 9 or lO). The minimum number of words in a cell is
3(mD=1,2, 3, 5, 7, and 11); the waximum possible length is 68 words
(ID = 9 and lO) although the exact length of string cells is determined

by the length of the strings.

19,

e A

-9..

The List of Availile Space (AVSL)

SLIP cells are created from a list of available space which is set up
by the programmer outside his own program arca by calling the function
INITAS.

Originally, the list contains 4096 bytes of core. Tt can be increased
by 1024-byte increments, whenever vhe current space is completely used, by
automatic calls for more space, up to the limits of the machine storage
allocated to the user. After first calling INITAS, the user need concern
himself no more with available space. To him, it appears that all the rest
of his job partition space is available at once. The Jjob is terminated if
a request is made for more space when nore is available or can be found.

At that time, one of two messages is printed out: 1

¥¥¥¥% INITAS COULD NOT ALLOCATE ANY SPACE FOR SLIP LIST STRUCTURE STORAGE.
*¥¥¥% GO.REGION WAS TOO SMALL. PROGRAM TERMINATED.

if the program took up so much of the user's space that INITAS could not
even allocate the initial partition, or
¥*¥%* NO MORE SPACE COULD PE OBTAINED AFTER xxxxxx BYTES HAD BEEN ALLOCATED
¥¥% yyyyy BYTES WERE STILL FREE BUT IN SEGMENTS 00 SMALL $8 gélgéED.
X% PROGRAM TERMINATED.
if INITAS had been able to successfully “ind space at least once. xxxxx and
YYYYY are num ers; Yyyyy can be greater than zero and allocation can still
fail if the bytes are in separate pieces each too small t¢ hold the new
cell. (If yyyyy = O, that comment line does not appear.)

AVSL consists of one or more segments of core, in full-word denomina-
tions aligned on full-word boundaries, linked together. The first word of

each slot contains the adaress of the first word of the next slot; the

second word contains the length of the slot in byles. (Slots of 4 bytes

11

T e

v

-10-

length have n> second word; their short length is indicated by a minuc sign 4
in the firs’ word.) Slots are ordered from léngest to shortest.

A request for space from AVSL to create a new cell causes the smallest
slot which is still large enough to hold the cell to be removed from AVSL.
The bytes necessary for the new cell are taken from that slot, and any
"leftover" bytes are returned to AVSL, taking their place in order by size.”
Cells to be erased, i.e., returned to AVSL, are put back in the list as
are leftovers from cell allocations. 1In returning pieces of storage to
AVSL, SLIP checks to see whether they are adjacent to slots already on
AVSL. If so, they are combined into one long slot and returned to AVSL

in that form.

Space Managing

In any list processing system, some provisions must exist for returning
unused cells to the list of available space so that no bit of space is
permanently lost. 1In SLIP, as much as possible of this erasing process is
nandled by the system--both to relieve the user of needless space managing
chores and to guard against the possibility of errors.

Removing data cells presents no prcblam, since a data cell does not
control other storage. Removing header cells, however, which happens
whenever a list is erased, may .iuse problems. If, for example, list A
is a sublist of list B, one must not erase A while B still exists. Erasing
A would not alter the structure of B, which contains a cell pointing to
the sublist A, and any subsequent effort to scen B's structure (e.g., using
reader facilities) would fail when it tried to enter the "sublist" which no

longer exists.

12

~11-

SLIP maneuvers around this difficilty by means of each list's refer-
cnce counter. When a list (e.g., A) is created, its reference counter is
usually 1. If A is made a sublist or the description list of another list,
A's reference counter is increased by 1. If an attempt is made to erase A,
via the ERASIST function, the ieference counter of A is decreased by 1. Only
if the new value of the reference counter is O or less is A actually erased.

I{n the example, A would not be erased because it is a sublist.

If a 1ist is actually erased, all its cells are returned to AVSIL.
In addition, an attempt is made to erase all of the list's sublists and
its description 1ist: the refer=znce counters of those lists are reduced
by 1 and any of the lists whose new reference values are O or less ure

'physically erased.

Example 1.
The following short program illustrates the use of some SLIP facilities
on a simple problem: dealing 200 blackjack hands from a complete deck.
Notes: (The numbers refer to statement numbers in DEAL)

2. NEWBOT is a generic function which in fact has entries for each
allowable SLIP data type; only the entry for character data is needed in
this program, so the full declaration for NEWBOT is not used.

3. LIST is also a generic function. Since only its first entry
point is needed, only that one is defined.

L. This initializes available space for SLIP.

5. The input cards are set to give DECK 52 sublists, each repre-
senting a card; each sublist contains two elements--the first is the
character string name of the card, e.g., CLUB.KING, and the second is the
point value of the card, e.g., 10. To simplify things, aces are assumed
to count 11.

6. N is the number of hands to be dealt.

T+ This makes an empty SLIP list which will contain the cards from
each deal.

9. EFach card, when dealt into HAND, will be marked with an index
number between O and 255 so that the card can't be dealt twice into the
same hand.

T T R . v

11.

-12-

RANDEL's valus is the address of a randomly-selected clement

(card) on DECK.

12.
POINTR.

DATUM sets CARD equal to the datum in the cell addressed by
Thus CARD is the name of the sublist with the card name and its

point value.

13.
15.
16.
19.
21.
22.
23,

Don't put the same card twice into the same hand.

CARDSTRING is given the character name of the card being dealt.
The card is actually "dealt" onto HAND.

Iterate until the hand's count is 21 or more.

Print the cards dealt in the complete hand and

print the total point value.

Empty the list in preparation for the next deal.

W

-13-
DFAL: PROC OPTIONS(MAIN);
STMT LEVEL NEST
1 DFAL: PROC CPTIONS(MAIN);
2 1 DCL (DECK, HAND, POTNTR, CARD) PTR, ‘%N, I, K, COUNT, ITSCOUNT)

) PIXED BIN (31), RANDEL RETURNS (PTR), MARK RETURNS (FIXFD PRI
b (31)), NEWBOT GENFRIC (NEWBOT9 ENTRY (PTR, CHAR(1) vaRr)),
/ CARDSTRING CHAR (48) VAR, TOP RETURNS (CHAR(48) VAR),
BOT RETURNS (FIXED BIN (31)), READLST GENFRIC (READLS1
L/ PNTRY (PTR)), PRNTLST GENERIC (PRNTLS1T ENTRY (PTR));
DCL LIST GENEKIC (LTST1 ENTRY (PTR));
CALL INITLS:
} CALL READLST (TECK):
N = 200;
l CALL LIST (HAND);
| DO I = 1TO0 N;

3 1

U 1

5 1

6 1

7 1

8 1

g 1 1 K = MOD(I,256);

| 10 1 1 COUNT = 0;
’ 11 1 1 LOOP: PGINTR = RANDEL(CECK);

12 1 1 CALL DATUM PCINTR,CARD);

13 1 1 IF MARK(CARD) = K THEN GO TO LOOP;
15 1 1 CARDSTRING = TOP(CARL);

16 1 1 CALL NEWBOT (HAND, CARDSTRING):
17 1 1 ITSCOUNT = BOT(CARD);

18 1 1 COUNT = COUNT & ITSCCUNT;

19 1 1 IP COUNT < 21 THEN GO TO LOOP;
21 1 1 CALL PRMTLST(HAND);
22 1 1 PUT DATA (COUNT);
23 1 1 CALL EMTYLST(HAND);
24 1 1 END;

25 1 END DFRAL;

Below is sample output from the program shown above.

(DTAMOND.ACFE HEART. FOUR CLUB.ONEEN }

COMUNT= 25;

(SPADE. FIGHT SPADE.KING DIAMOND.QUEFN)

COUNT= . 28;

(HEART.TWO DI AMOND. THREE SPADE.JACK CLUB.NINE)
COUNT= 24;

(CLUB,.T®EN DTIAMOND.JACK HEART.TEN)

COUNT= 30;

(CLUB.FIVE ARART.KING SPADE.TEN)

COUNT= 25:

(HFART. FIVE DIAMOND.QUFREN SPADF.FOUR HEART. JACK)
COUNT= 29;

(CLUB.SRVEN DIAMOND.QUEFN HEART.KING)

COUNT= 27;

(HEART.JACK HPART.KING DIAMOND.FIVE)

COUNT= 25;

(DIAMOND. ACE HEART.SIX CLUB.FOUR)

COUNT= 21;

{ SPADE.SIX DIAMOND. THREE SPADE. KING CLUB.TEN)
COUNT= 29; !

-

-1 -

Facilities in SLIP

The following sections describe the types of things which can be done
using SLIP. In each section, a general description and its examples are
followed by a formal description of the functions introduced in the section.
The index at the end of this paper allows one to easily locate the descrip-
tion of any particular function.

In the description for each function, the allowable calling sequences
are listed; they include the list of possible variables. The names of the
variables are intended to indicate the data type of the wvariables. 1In
summary form, the "ist below shows the exact data type for the dummy
variables used in the following sections.

1sT, LST1, LST2, ORGL, COPY, COP2, HOST, DLST; PNTR, POINT, CELL, LINKR,
LINKL; RDR, RDR2. These are all pointer variables. (In general, all main
program variables which name lists or readers or otherwise address SLIP
cells should be pointer variables.) LST through DIST are list names (i.e.,
they contain the addresses of list headers). BPNTR through LINKL are cell
addresses; in some cases, the cells may be headers which would make the
variable a list name. RDR and RDR2 have the addresses of reader cells,
which makes them reader names.

DATM, DAT1, DAT2, NLDDAT, ATTR, VALU, OLDVAL, NUVAL. These are allow-
able SLIP data, which may correspond to any of the data types with ID velues
between 1 and 11 in Figure 2.

DATID, ATID, VALID, LVL, INT, INGTH, I, J. These are all binary
integers. The first three are used as ID values and, in particular, should

only have values between 1 and 1l.

. &
b

16

-15-

STRING may be any bit or character string.

FILENAM is the name of a stream input or stream output file.

X, Y, DX, and DY are floating point numbers. X and Y are one word
long; DX and DY are two words long.

VAR may be any variable which does not have a Dope Vector (i.e., any
nonstring, nonarray variable).

CODE is a binary integer with values between O and 9.

Initializing Available Space

In order to use SLIP tunctions, one must first set up the list of
available space so that SLIP cells maS be created and erased. This is
accomplished by the statement "CALL INITAS;". In the program, this step
must be executed only once and before any other SLIP functions are called.
It is often easiest to make this the first executable statement in the

program. (See Appendix A for a convenient way of insuring this.)

CALL INITAS; or CALL INITAS(INT);
This functiop makes available to SLIP all the unused machine storage
in the programmer's region. It also initializes all new space to O except
for the link words necessary to chain the segments of AVSL together.

INITAS sets in motion the housekeeping aspects of SLIP which will generate

new cells when required and erase o0ld cells when no longer needed.

The argument INT, if included, is relevant to SLIP's error detection
procedures (see Appendix B). SLIP normally notes errors during execution
and continues processing; to keep from running indefinitely, SLIP tallies
those errors. By default, the program is terminated after 50 such errors;

the argument INT, if included, serves as the new cutotf criterion.

17

gt A

-16-

Creating and Modifying Lists

The functions to be described in this section perform the basic func-
tions of creating lists, adding, subtracting, and replacing elements, re-

trieving data, reshaping lists, and erasing lists.

Example 2.

Certain models of memory taken from psychology utilize short-term
memory banks; these may be represented by SLIP list structures. Assume for
the following segments of program that MEMORY is a list whose elements are
the items cur 2ntly held in short-term memory (e.g., CVC trigram pairs in a
paired associates learning task). The code shown will move new pairs into
memory and remove "forgotten" pairs according to three different schemes.

A. Assume an infinite memory in which no old pairs are forgotten.

CALL NEWTOP(MEMORY, CVCONE Il '=' | cveTwo);

Or, if one wishes to place the new pair at a random position on the list,

N = NUMBEL(MEMORY) + 1;

IF IRAND(N) = O THEN PLACE = MEMORY;

ELSE PLACE = RANDEL(MEMORYK; /*PLACE is a pointer variable */
CALL NEWTOP(PLACE, CVCONE ['=' | cvcTwo);

B. If memory is of fixed lenghbh and the pair to be replaced by the
new pair is the oldest one, the following code will add new pairs to the

top of MEMORY and, if memory is full, remove ﬁhe old pairs from the bottom.

CALL NEWTOP(MEMORY, CVCONE || '=' [cveTwo);
IF NUMBEL(MEMORY) > N THEN CALL POPBOT(MEMORY);

18

S R

i

-17-

L C. If the memory is of fixed maximum length, the following code will
? replace randomly selected old pairs with new pairs when the memory is full.
L’ IF NUMBEL(MEMORY) < N THEN CALL NEWIOP(MEMORY,CVCONE ['=' || cveTwo);
} ELSE CALL REPLACE(RANDEL(MEMORY),CVCONE |i '=' || cvecTWO);

| In examples 2B and 2C it is possible to retrieve the value of the
erased pair by using POPBOT or REPLACE as functions; e.g.,
OLDPAIR = POPBOT(MEMORY);
if OLDPAIR is a character string variable and one uses a slightly unnrthodox
declaration for POFBOT or REPLACE, e.g.,

DCL POPBOT RETURNS (CHAR(20) VAR);

C.LL LIST(LST); or IST2 = LIST(LST); or LST = LIST(9);

LIST creates an empty list and in each of the statements above assigns
to IST the name of the new list (i.e., places the address of its header
cell in IST). In the second version, ILST2 is also given the name of the
list.

If the argument is a pointer variable, the reference counter of the
list is set to 1. 1In that case, the list can be erased only by an explicit
call to ERASLST. If the argument is (the decimal constant) 9, the reference
counter is set to O. The list may be automatically erased if, for example,

it is the sublist of another list which is erased.

CALL COPYLST(ORGL, COPY); or COP2 = COPYLST(ORGL, COPY);
or COPY = COPYLST(ORGL);

ORGL, COPY, and COP2 are pointer variables.

-18-
L COPYLST creates an exact copy of the entire list structure named ORGL
and assigns the name of the copy to COPY and, if eppropriate, COP2. If
t’ COPY is already the name of a list, the contents of ORGL are placed below

} the current contents of COPY.

‘ COPYIST makes copies of all sublists and description lists in the list
‘ structure of ORGL; thus the original and its copy are physically distinct.
The topography of the original is repeated in the copy; if, for example,

the original references the same sublist twice, the copy r<“~r-~-es a
single copy of the sublist twice.
CALL EMTYLST(LST); or IST2 = EMIYLST(LST);

IST is made into an empty list; its data cells are returned to AVSL,
including sublists where appropriate. The description list of LST, if
there is one, 1s not erased. IST2 is given the name of the now empty list
(i.e., is made equal to IST).

CALL ERASLST(LST); or LVL = ERASLST(IST);

ERASLST first decrements the refergnce counter of IST by 1. If the
counter's new value is greater than O, indicating that ILST is still the
sublist or description list of some existing list, nothing further is
done.

A1l levels of IST are removed--top level, its description list, any
sublists, their description lists, their sublists, etc.~-subject to the
same restrictions that apply to the main list: 1lists with a new refer-
ence level of more than O are retained.

If called as a function, ERASIST returns a binary integer whose value

is the new value of LST's reference counter. If IVL = O, the list has been

erased.

-19-
CALL NEWTOP(LST, DATM); or PNTR - NEWTOP(LST, DATM);
CALL NEWBOT(LST, DATM); or PNTR = NEWBOT(LST, DATM);

NEWIOP (NEWBOT) creates a new SLIP cell containing DATM and places
that cell at the top (bottom) of the list named IST. All other cells of
the list are unchanged; the effect is of putting a new link in a chain
without breaking or rearranging any other links.

DATM may be any of the 11 data types which may be stored on lists;
NEWIOP and NEWBOT are generic functions with separate entries for each
data type (see Appendix C).

PNTR is a pointer variable which, if used, is given the address of
the newly created cell.

The first argument "LST" for either function may point at a cell on
a list rather than name the list; in that case, the new cell is placed to

the right of the addressed cell (for NEWTOP; to the left for NEWBOT) .

CALL SUBTOP(LST, DATM [, ID] [, OLDDAT]);
CALL SUBBOT(LST, DATM [, ID] [, OLDDAT]);
CALL REPLACE(PNTR, DATM [, ID] [, OLDDAT]);

All three functions remove a data cell from a list and replace it with
a new cz1l containing DATM. (DATM must be an allowable SLIP data type; LST
and PNTR are pointer variables; and ID, if present, is a binary integer
whose value is the SLIP ID number corresponding to the data type of DATM.
If ID is omitted, it is assumed that DATM is the same type as the datum
of the erased cell.)
OLDDAT, if present, is given the value of the datum of the erasad cell.
OLDDAT must be of the appropriate type; no conversion is made. é

If LST names a list, SUBTOP replaces tne top data cell on the list and

SUBBOT replaces the bottom cell. As in the case of NEWTOP, LST may be the

RTFoA R RSN 2y

CALL POPTOP(LST[, DATM]g;
CALL POPBOT(LST[, DATM]
CALL REMOVE(PNTR[, DATM]);

-20-

address of any list cell: the only restriction is that the removed cell
may not be the list's header.
REPLACE replaces the cell addressed by PNTR; that cell may not be a

list header.

Programming note. In programs in which SUBTOP, SURBOT, or REPLACE is

used to replace a single data type, it may be declared and used as a func-
tion which returns that datum type. For example, if only character string
data are replaced, one can say DCL SUBTOP ENTRY (PIR,,FIXED BIN (31))

RETURNS (CHAR (20)VAR); and then use statements like OLDSTR = SUBTOP (LST,

NEWSTR, 9).

CALL TOP(LST, DATM);
CALL BOT(LST, DATM);
CALL DATUM(PNTR, DATM);

LST is usually the name of a list, although it may be the address of
any list cell. PNTR is the address of any cell except a list header. DATM
is set to the value of the datum in the cell to the right of that addressed
by IST (for TOP) or to the left of that addressed by IST (for BOT), or in

the cell addresced by EINTR (for DATUM).

Programming note. In programs in which TOP, BOT, or DATUM is used
only for a single data type, it may be declared and used as a function
which returns that datum type. Two instances of this are shown in Example

1l above.
3.

These three functions work like TOP, BOT, and DATUM and in addition

erase the cell in question. Because one may wish to remove a cell without

22

-21-

being given its datum, the DATM argument may be omitted. If DATM is

present, it must be of the same data type as the datum in the cell.
When the cell is removed from a list, the remainder of the list is

linked around the gap. The cell to bte removed may not be a list header.

Programming note. If POPIOP, POPBOT, or REMOVE is being used only

to return a single datum type, it may be declared to return that datun
type and used in assignment statements, e.g., ZORCH = POPTOP(IST);.

CALL MOVER(IST1, LST2);
CALL MOVEL(LST1, LST2);

MOVER and MOVEL move the entire contents of ILST2 onto ILSTl. MOVER
pPlaces the transferred cells at the bottom of any prior contents of LST1;
MOVEL puts the moved cells at the top of LST1l, above its prior contents.

If IST2 is the address of a cell on a list rather than a list name,
then the cells moved are the ones between the addressed cell and the bottom

(for MOVER) or the top (for MOVEL) of the list containing the cell.

Input/Output Facilities for Lists

The functions described in the preceding section are useful for making
delica?euand relatively small-scale modifications to lists. For creating
large or complicated lists, it is much more efficient to read the list from
a stream input file by means of READIST.

Also discussed in this section are the specialized “unctions for out-’
putting lists or cells onto stream output files. They make it possible to
conveniently display list structures--either in a form which may sdbsequently
be reread by the input function (through PRNTIST) or in a form withvmore
list structure information for debugging (through PUTLIST and PUTDATM).

CALL READIST(LST [, 'BREAK=x'] [, {131)1 [, FILENAM]);

oo

READIST is a general function for reading list structures from stream
input files. The default file is SYSIN; this may be overridden by using
the FILENAM argument to indicate the desired file. READIST creates a new
list, assigns the name to LST, and makes its contents the structure given
in the input file. If LST already named a valid list, that list is erased.

The input format consists of a left parenthesis to indicate the
beginning of the list, followed by the elements of the 1list, followed by
a2 right parenthesis to end the list. The parantheses and the elements are
separated from each other by one or more break characters; thus parentheses
may be parts of elements if joined on either or both sides by nonbreak
characters. (The default break character is the blank, but may be altered
to any other character except (,), or " by the argument 'BREAK=x', where
the substitute for x is the new break character.) Sublists are entered in
the same format within the delimiting parentheses for the higher 1list.
Description lists are entered as sublists except they are preceded by
"DLIST:" which serves as an identifier and is not interpreted as a list
element.

For example,

(DLIST: (CONTENTS NOUNS NUMBER SINGULAR) HORSE COW (DLIST: (
TYPE DOGS) DAIMATION BEAGLE MUTT))

would produce a main list containing "HORSE" and "COW" and a sublist with
dog names; each list would have a description list.

All allowable SLIP data types may be read in; for each element, the
decision of which data type to assign is based on the element itself and
whether or not either option 'B' or option 'T' is selected. If option 'T!
(for ESEE) is chosen, all elements are assumed to be character string
variables (ID = 9). The table below indicates the ID selections for the

default condition and for 'B! (fﬁ&inarx).

-23.
Input Element Form ID Assigrment Lxamples
default 'B'

{+)ddddaa lor2 | 5or6 123 +57 1011101 -99999Y
[+]obbbbbbbB lor2; lor?2 -1011101E 1B OB
[+]dad.dad Tor& | 7or8 0L 1. -.00001 +125.
[+]Jbbbb.bbbbB 7Tor8| 3ork +.,01B 11.01B 1010101.B
'"bbbbbb'B 10 10 '100'B '1'B '0'B
(all else) 9 9 WORDS '101' .833E+15

Note.--"d" stands for any decimal digit 0-9; "b" stands for either
binary digit, O or 1.

The choice between adjacent codes 1 and 2, 3 and 4, 5 and 6, and 7
and 8 depends on the length of the number. If a fixed decimal number has
5 digits or less, or a float decimal number has 6 significant digits or
less, or a fixed binary number has 15 bits or less, or a float binary number
has 21 significant bits or less, it is given the ID of the shorter precision.
If numbers are longer than 15 or 16 digits or 31 or 53 bits (fixed and
floating point, respectively) the‘most significant extra places are lost.
Bit strings (ID = 10) may contain up to 2OL8 bits. Character strings may
have ip to 256 characters.

The data representations correspond to the form for constants written
in PL-I programs with one exception: character strings are stored in toto;
delimiting single quotes (') are not necessary and, if present, are stored

as part of the string. E-format numbers are not allowed; they would be

interpreted as character strings.

The binary option ('B') allows one to read fixed or float decimal or
binary. Because it is awkward to write binary numbers and because the 360
performs fixed decimal arithmetic slowly, the default option assumes that
any number should be stored as either fixed sinary or float decimal.

(These are the default PL-I data types also.)

o ________;=____________________E;;E_:_____J-llIlIlIIIII.IIII..I............il

-

-oha

It is sometimes handy to create list structures in which a single list
is a sul'list 2t two or more points--or is its own suwlist. To read such
lists, one can indicate each repeated list by assigning it a distinct number
the first time the list is read and simply repeating the number whenever the

list is to be rereferenced. The numbers need not form any sequence.

For example,

("83" THIS LIST REPEATS (THIS ONE DOESN'T) ("83"
) DLIST: ("83")

The main list is its own sublist and its own description list. ©Note that
unreprated lists need no index number. Note also that there is no space
separating the left parenthesis from che index, but there is one between the
index and the right parenthesis.

In record-oriented I/0, it has been customary for lists to begin in
the first c~lumn of a card or record. No such restriction is relevant to
stream I/O. In the current implementation of READIST, the input file is
read ir. 80-character segments. A new segment is read at the start of each
call to RYADIST. Therefore one must begin each list beyond the 80-character
block which contained the end of the previous list or after the end of

previous data read by a GET statement. To be safe, allow at teast 80

characters before the start of any list. (Or, if one is really using card

input with only lists in the input stream, it is more convenient and
equally reliabie to start each list on a new card.)

Notes. Tae characters between the end of one list and the start of
another need not be break characters; they may be anything except left
parentheses, such as phrases identifying the contents of the coming list.

READIST will scan only three 80-character segments for the start of

a list. If it has not found a left parenthesis in those 240 characters,

-25-

KREADLST will print an error message and return control without creating a
new list. 1
CALL PRNTIST(TST [, 'BREAK=x'] [, 'B'] [, FILENAM]);

PRNTLST prints the contents of the list structure named LST on an
sutput file--either SYSPRINT or, if the FILENAM argument is present,
FILENAM.

The output format is ideitical to that required by READIST: 1lists
are delimited by parentheses; description lists are printed as sublists
with the label DLIST: in front of the left parenthesis, etc. The dcfault
break character is the blank; it may be changed to any desired value

except (,), cr "

by using the 'BREAK=x' argument.
If the argument 'B' is omitted, i.e., the default is chosen, numbers
are printed as either fixed or float decimal values. If 'B' is chosen,

data with ID = 5-8 ure printed as decimal numbers and data with ID = 1-k

are printed as fixed or float binary numbers. Character and bit string data

are printed as indicated for READLST under either option. Since binary
numbers are difficult to interpret visually, one should prefer the default
printirg style unless he wants to preserve the distinction between binary
and decimal machine representation.

Within the list structure, if a list is referenced more than once, it
is given an index number for the first appearance of the list; the index
number alone appears for each additional reference to the list. The number
is, in fact, the namc of the lis t--the address of its header--printed in
hexadecimal.

CALL PUTLIST(LST);
CALL PUTDATM(PNTR);

PUTL1ST and PUTDATM are intended more as debugging aids than as con-

venient list output devices. PUTDATM prints the contents of the single

-26-

cell addressed by PNTR, which may be the name of a header cell as well as

of any data cell. PUTLIST prints the list named by LST, one cell per

i
h
4
L/ printed line, including sublists but excluding description lists.
} Printout for each cell consists of its ID, LNKL, LNKR, and the datum;

I for a header cell, this includes two items: the name of the description

| list and the reference counter.

| All items which are addresses--LNKL, INKR, and sublist and description

list names--are printed as hexadecimal constants. Other data are printed)

) in forms consistent with the data types.

The Reader Facility

In order to take full advantage of the power of list processing, the
user must have some general means of scanning lists whose exact structure

could not be known during the programming. Readers provide such a mechanism.

A reader is essentially a pointer which can be moved through a list struc-
ture to find certain data or data types, can be backed up or moved forward,
and can perform these activities in a list structure of any degree of
complexity.

Readers are specialized SLIP cells made up of 4 words organized as

shown below:

Reader field | IDlLINK ILVLCNT ILDFR?ﬁJ CELLPNT

Bytes l 64‘1-3441 h-7 l 8-11 l 12-15

The ID for such cells is 13. In place of the usual INKL is a LINK address
which points to the next reader cell on the stack, if any (a new reader

cell is generated for each level descended into the list's sublist

-27-

structure). In place of MARK and LNKR is the integer LVICNT, which is the
number of levels into the list structure the reader has descended as well
as the number of additional cells in the reader stack. ILOFRDR is the name
of the list (or sublist) currently being scanned, and CELLPNT is the

address of the actual cell being pointed to.

Example 3.

This example shows two slightly different procedures for counting the
sublists in a list structure. The first counts only the sublists on the
main list. IST is the name of the list, RDR a pointer variable which will
be the name of the reader, and FLAG is a bit string 1 bit long.

RDR = RDROF(ILST); A reader is created for LST and RIR is
given the address of the reader cell.
Initially the reader points to LST's
header.
N = 0;
I =11
LOOP: CALL ADVINR(RDR,FILAG,I); The reader is advanced to the first cell

on the main list which contains 2 sublist
name--i.e., has an ID of 11. FLAG = '1'B
if a sublist name was found; '0'B if none

was found. ADVINR (advance linearly to

the gight) moves the reader down the list

but does not move it into sublists.
IF ~FIAG THEN GO TO NEXT;

N=N=+1;
GO TO LOOP;

NEXT: CALL ERASRDR(RDR); At this point N = the number of sublists
cee in the main level. ERASRDR erases the

reader cells since there is no further
need for the reader.

The second version counts all of the sublist name cells in the entire
list structure. CELL is another pointer variable; MARK and SETMARK are

functions for testing and changing the MARK portion of SLIP cells.

S an e e vt L

RDROF(LST);

sz-
o w .
H‘Dn

>
13

LOOP: CALL ADVSTR(RDR,I FLAG);

IF ~FLAG THEN GO TO NEXT;

CELL = CELLPNT(RDR);

IF MARK(CELL) =
N =N+ 1;
CALL SETMARK(CELL, I);

END;

GO TO IOOP;

0 THEN DO;

NEXT: IF K > O THEN DO;
REIOOP:
IF FLAG THEN DO;

CALL SETMARK(CELLPNT(RDR)

)0)5
GO TO RELOOP;
END;
END;
CALL ERASRDR(RDR);

RDR = RDROF(LST);

CALL ADVSTR(RDR, I,FLAG);

-08-

ADVSTR (advance structurally to the right)
will move the reader through IST's entire
structure, entering sublists as they are
encountered.

Quit when the scan has gone throuzh the
entire structure, as before.

CELL is given the address of the cell
actually pointed to by the reader.

As each sublist cell is counted, it is
marked so that it won't he counted twice--
as it woald, for example, if the same
sublist was referenced twice and it had
one or more sublist cells.

Erase any marks that were made during
the counting process.

If LST is the name of a list, then RDROF creates a reader cell for

that list and assigns the address of the ceil to RDR.
points to the header of IST--i.e.,

contain the address of the list.

RDR2 = COPYRDR(RDR1);

The reader initially

its LOFRDR and CELLPNT sections both

If RDR1 is the name of a reader, a copy of the entire reader stack is

made and RDR2 is made the name of the copy.

This function is useful in cases

in which one may want to make several different scanning passes at a list

-~

30

-29-

after reaching some point in the lirt. The copy insures that one can
always come back to the same point for the next scan.
CALL ERASRDR(RDR); or IVL = ERASRDR(RDR);
ERASRDR erases the reader named by RDR; all the cells in the reader
stack are returned to AVSL. If LVL is present, it is set to the LVICNT

of the reader--i.e., how many lists deep into the list structure it had

descended.
CALL ADVSTRsRDR [,DATID} [,FIAG]); or PNTR = ADVSTR(RDR [,DATID] [,FLAG]);
CALL ADVSTL(RDR [,DATID] [,FIAG]); or PNTR = ADVSTL(RDR [,DATID] [,FLAG]);
CALL ADVINR(RDR [,DATID] [,FIAG]); or PNTR = ADVINR(RDR [,DATID] [,FLAG]);
CALL ADVINL(RDR [,DATID] [,FLAG]); or PNTR = ADVINL(RDR [,DATID] [,FIAG]);

These functions perform the actual scanning operations. They may
move the reader to the right (downward) via ADVSTR or ADVLNR, or to the
left (upward) via ALVSTL or ADVINL. If it encounters sublists on the list
being scan ed, the reader may move structurally into the sublist via
ADVSTR or ADVSTL or it may continue linearly along in the same list via
ADVINR or ADVLINL.

If called in assignment statements, the reader advance subroutines
give PNTR the address of the cell advanced to, unless the advance fails
to find a proper datum cell, in which case PNTR is set to NULL.

In the full argument list, RDR is a pointer variable naming the reader,
FLAG is a bit string of length 1 whose value is set to '1'B if an accept-
able datum is found and '0'B if none is found, and DATID is a binary integer
with values between 1 and 11 to indicate the type of data cell to be found.
FLAG and/or DATID may be omitted from the calling sequence. If DATID is

omitted, any data cell may satisfy the scan.

31

If RDR is advanced by ADVLNR or ADVLNL, the following actions take
place: (a) CELLPNT is made equal to the address of the next cell to the
right (left) of the one it was pointing to. (b) If the new cell is the
header of the list (i.e., IOFRDR = CELLPNT), FILAG (if present) is set to
'0'B, and the function returns. (c) Or, if the ID of the new cell = DATID
or if DATID was omitted, FLAG (if present) is set to 'l'B; PNTR (if present)
is given the cell's address, and the function returns. (d) Otherwise, an
acceptable cell hasn't been found, but the list has not been completely
scanned, so step (a) is repeated.

If RDR is advanced via ADVSTR or ADVSTL, the same basic :canning process
occurs except for modifications which allow RDR to scan the entire list
structure rather than just the top level. (e) When the reader is advanced
to a cell containing a sublist name (and that isn't the desired datum type),
a new reader cell is created for the sublist (pointing initially to the
header of the sublist). The scan then continues in that sublist, searching
its cells for the type of datum desired. (This process may repeat endlessly,
allowing sublists of sublists of sublists, etc., to be scanned.) (f) It
the scan fails in a sublist (i.e., lands back on the header without finding
a proper target), the reader cell which was created for that sublist is
erased and the scan continues, in the list one level higher, with the cell
one to the right (left) of the one which had named the sublist.

No matter how simple or complex the past scanning of a reader, it may
be advanced further by any of the four ADV___ functions. 1In particular,

there is no problem with advancing a reader via ADVIN _which had been left

=51~

. pointing in a sublist of the main list by a previous ADVST_ call. (In such

g cases, the reader acts like a linear reader of the given sublist.)
t/ Note. ADVSTR and ADVSTL have built-in protection apgainst list struc-

tures which loop back on themselves. By SLIP standards, for examplc, it
is fine to construct a structure of lists A and B such that each is a sub-
list of' the other. 1In such a structure, an unsophisticated rcader could
enter sublists indefinitely without ever running out of sublists, since
it would be tracing a loop. Therefore, when ADVSTR or ADVSTL is asked tc
enter a sublist, it checks the reader's stack to make sure the sublist
is not one which, at a higher level, RDR is already scanning. If this is
true, RDR is advanced linearly to the next cell beyond the one with the
sublist name, just as is normally done by ADVLNR and ADVLNL.

CALL INITRDR(RDR); or RDR2 = INITRDR(RDR);

INITRDR initializes the reader within the list currently being scanned--

that is, the reader is set pointing at the header of whatever list or sub-
list is currently being scanned. (If the reader was already pointing to
the header, no change occurs.) RDR2, if present, is given the name of the
reader.

CALL LVLRVT{RDR); or RDR2 = LVLRVT(RDR);
CALL LVLRVT1(RDR); or RDR2 = LVLRVTL(RDR);

These functions move a reader back up a list structure. The reader
may back up one level (with LVLRVTl) or as many levels as necessary to
reach the top level (with LVLRVT). (Each step of backing up is accom-
plished by popping the top cell off the reader, leaving the reader pointing

to the cell from which it had entered the lower sublist.) The reader is

left pointing to the cell of the proper level from which the reader had

33

-32-

descended. If the reader was somewhere in the top level when either func-
tion was called, there would be no action taken. RDR2, if present, is set
to the name of the reader.

Programming note. These functions, along with INITRDR, are useful

for reinitializing a reader without having to erase it and then create a
new one. The statement CALL INITRDR(IVLRVT(RDR)); first brings the reader
back into the main list and then makes it point to the header; this is
exactly as the reader was when first formed.
CALL REED(RDR, DATM);

REED sets DATM equal to the datum of the cell currently pointed to by
RDR. It assumes the data types match. (If the reader points £o a list
header, no assignment is made.)

Programming note. If REED is only used to assign a single data type,

it may be declared as a function which returns that type and then used in
statements like DATM = REED(RIDR);.
INT = LVICNT(RDR);

INT is given the IVICNT value for the reader named RDR. If the reader
is in the top level of the list, INT = O; if the reader is in a sublist,
INT = 1; if the reader is in a sublist of a sublist, INT = 2; etc.

LST1 = LOFRDR(RDR);

IST1l, a pointer variable, is given the name of the list currently
being scanned by RDR. This may be the list for which RDR was originally
created, i1f LVICNT = O, or it may be the name of any of the list's sublists.

CELL = CELLPNT(RDR);
CELL is given the address of the cell currentiy being pointed to by

the reader. -

CALL SEARCH({

e T (_,,va -

_jj -

LST)
RDR
or FLAG = SEARCH({

, DATM, DATID [, PTR]);
;ig} , DATM, DATID [, PTR]);

SEARCH scans the list LST for an occurrence of DATM, which is a datum
of the type with ID = DATID. If the search is successful, the argument PTR
(if present) is given the address of the cell in which the datum was found
and FLIAG (if present) is set to '1l'B. If the search fails, PIR is set to
NULL and FLAG = 'O'B.

The search always proceeds by means of a reader advanced by ADLVSTR;
thus if DATM is on LST or =ny of its sublists the search succeeds.

If the first argument is IST, the name of the list, then the search
begins at the top of the list. If one wanted to search for different
occurrences of the same datum, for example, an alternative exists. One
can create a reader for the list (e.g., RDR = RDROF(LST);) and then use
the reader as the first argument in the calling sequence. Then SEARCH
scans IST from the cell at which the reader was pointing. The following
code, for example, will count the occurrences of THE on IST:

N -

RDR
LOOP: FIA

3
RDROF(LST) ;
= SEARCH(RDR, 'THE', 9);
IF FLAG THEN DO;
N=N+ 1;
GO TO IOOP;
END;
CALL ERASRDR(RDR);

LR IRY

@il O

b

n

Description List Functions

Any list may have a description list, and that description list may

have any structure desired. Classically, however, description lists have

T -

3L~

been thought of as lists of attribute dimensions plus values for those

dimensions which define or describe the main list. For example, if a

list is NEWCAR, it might have these attributes and values: MAKE, STUTZ-
BEARCAT; PRICE, 8350; YEAR, 1970; STYLE, CONVERTIBLE; COILOR, BURGUNDY; etc.

This type of description list is organized as a linear list with

adjacent cells representing attribute-value pairs. The top cell of the
list is the name of the first attribute dimension (e.g., MAKE), the cell
below that is the list's value on that dimension (e.g., STUTZ-BEARCAT),
etc. The functions described below are used to add, remove, and locate

attributes and values on such a list.

Example 4.

This example shows the use of description lists in the context of
another card problem. The procedure PLAYHI is intended (for bridge, say)
to play a card on a trick to which other cards have already been played.
From HAND, PLAYHI must select a card from the right suit and make it either
the highest card in the hand‘'s suit, if it will beat the cards already
played, or the lowest card in the suit.

Let us (and PLAYHI) assume that HAND contains 4 sublists, one per
suit, each having whatever cards of that suit the hand contains arranged
by rank, with the highest card at the top. Let each sublist also have a
description list with the following attribute pairs: NAME, (SPADES or
HEARTS or DIAMONDS or CLUBS); NUMBER.OF.CARDS, (#); and RANKS (sublist
with integers from 1 (deuce) to 13 (ace) for each of the cards the suit

has).

36

- T =

-%5-

PLAYHI: PROC (HAND, SUITNAM, RANKHMI) CHAR (20) VAR;
DCL (RDR, HAND, PSUIT, PNTR) PIR, RDROF RETURNS (PTR),

(NAME, SUITNAM) CHAR (8) VAR, RETIN CHAR (20) VAR,
RANKHI FIXED BIN, NEWVAL ENTRY
(PIR, ,FIXED BIN,,FIXED BIN), ITSVAL ENTRY (PTR,,FIXED BIN,),
TOP RETURNS (FIXED BIN), (POPTOP, POPBOT) RETURNS (CHAK (20)
VAR), ADVINR GENERIC (ADVINRL ENTRY (PTR) RETURNS (PIR)),
CONTS RETURNS (PTR), SUIT PTR BASED (PSUIT);

RDR = RDROF(HAND); PSUIT is set pointing to the datum of
ICOP: PSUIT = ADVLNR(RDR); the new cell; thus SUIT becomes the

PSUIT = CONTS(PSUIT); name of the next suit sublist.

CALL ITSVAL(SUIT, 'NAME',9, NAME); NAME is given the SUIT's

value on the attribute NAME.

IF NAME~ = SUITNAM THEN GO Scan 'mtil correct suit is found.

TO LOOP;
CALL ITSVAL(SUIT, 'NUMBER.OF. N gets the integer number of cavrds in
CARDS',9,N); the suit.
IF N = O THEN DO
RETN = ''; If no cards, return the null string
GO TO SCOOT; to tell the main program so.
END;
CALL NEWVAL(SUIT, Decrement the number of cards value to

' NUMBER.OF.CARDS',9,N-1,1); compensate for the card removed below.

CALL ITSVAL(SUIT, 'RANKS',9, PNTR is made the name of the sublist
PNTR); with the card ranks.

N = TOP(PNTR);

IF N > RANKHI THEN DO; Play a card to try to win the trick.
CALL POPTOP(PNTR);
RETN = POPTOP(SUIT);

END;

EISE DO; Play the lowest card in the suit.
CALL POPBOT(PNTR);
RETN = POPBOT(SUIT);

END;

SCOOT: RETURN (RETN);
END PLAYHI;

CALL MAKDIST(HOST, DLST); or LST = MAKDLST(HOST, DLST);
MAKDIST takes two already-created lists and makes the second the

description list of the first. If HOST already had a description list,

it is erased.

37

-36-

If used in an assignment. statement, MAKDIST returns the name of the
host list.
CALL NODLST(HOST); or LST = NODLST (HOST);
If the 1list named by HOST has a description list, it is erased and
removed from HOST. IST, if rresent, is made the name of the host list.
Both MAKDLST and NODLST may be used on description lists of any form.
CALL NEWVAL(HOST, ATTR, ATID, NUVAL, VALID [, OLDVAL]);
On the description iist of HOST, the old value of ATTR is removed
and replaced by NUVAL. ATID is the SLIP ID of the attribute and VALID
is the ID o1r the new value; both must be present. If OLDVAL is included
in the argument list, it is given the 0ld value for the attribute. OLDVAL
must be of the same data type as the old value.
If there was no old value, and in fact was no ATTR on the attribute
list, ATTR and NUVAL are added as the bottom pair of cells on the list.
If there was no attribute list for HOST, one is created with ATTR
and NUVAL on it.

Programming note. If NEWVAL is to return old values of only one data

type, the user can declare the function to return that type and then use
assignment statements like this:

OLDVAL = NEWVAL(HOST, ATTR, ATID, NUVAL, VALID);

The same procedure may be applied to ITSVAL and NOVAL, described
ncxt, if appropriate.

CALL ITSVAL(HOST, ATTR, ATID, VALU);

-

-5’?_

ITSVAL searches the attribute list of HOST for the attribute ATTR,
whose SLIP ID is given by ATID. If it is found, VALU is given the value
for ATTR. VALU must be of the same data type as the attribute's value.

CALL NOVAL(HOST, ATTR, ATID [, VALU]);

NOVAL removes from the description list of HOST the cells with the
attribute ATTR (which has ID = ATID) and with the attribute's value. I
VALU is included in the argument list, it is given the value of the
erased attribute.

DIST = NAMDILST(HOST);
It HOST has a description list, then DIST is given the name of that

description list.

Boolean Tests

The functions described below are ones giving True-False answers
about certain properties of specific lists. SLIP routines use these func-
tions (particularly ISTNAME) to test the arguments they are given so that
they do not blithely manipulafe randcm storage locations. They may be
useful in user programs as switches 40 leave or enter a section of the
program, or as tests to guard against improper manipulations. Many SLIP
functions return nothing if given invalid arguments and, at least in some
parts of the user program, it is desirable to check the output of such
functions before continuing.

FLAG = LSTNAME(LST);

If IST is the name of a valid list. FLAG is set to 'l'B; otherwise,

'0'B. LSTNAME checks trut the addressed cell has ID = 12 and that the

top and bottom cells of the list in fact point back to the header.

Dhathautih. e A

-38-

FIAG = CELLNAM(PNTR);

Tf PNTR points to a valid cell which is part of a list, FLAG ='l'B;
otherwise, FLAG = '0'B. CELLNAM checks that the cells to the right and
left of the one named by PNTR poiit back to it and that the ID is between
1l and 11.

FIAG = RDRNAME(RDR);

If RDR points to a validly-formed reader cell, FLAG = 'l1'B; otherwise,
FLAG = 'O'B. The function tests the ID of the cell and whother its LOFRDR
points to a list and its CELLPNT points to a valid cell.

FIAG = LSTEMTY(LST);

If 18T names an empty list consisting of the header and no data cells,
FLAG = '1'B.

FIAG = LSTSEQL(LST1, LST2);

FIAG = '"1'B if IST1 equals LST2, 'O'B otherwise. IST1 "eguals" IST2
if they both point to the same list or if (a) both list structures have
equal data cells (ID = 1-10) at all points and (b) both cite the same or
equal sublists at the same points. The list topographies must also match:
if IST1 cites the same sublist twice, IST2 must also cite its version of

the sublist twice. Description lists are not checked.

Random Number Functions

INT = NUMBEL(LST);

NUMBEL returns the integer number of data cells on the main list
named IST. It does not count cells on sublists, nor does it count IST's
header.

]

PNTR = RANDEL(LST);

=39

RANDEL returns the address of a randomly-selected data cell from the

D™ B

main list LSY. It will not select a cell from a sublist, although it may
L/ select a datum cell in LST which names a sublist.

} The following functions generate random numbers according to several
| poscible formats. Their use is not necessarily related to SLIP, and they
\ may in fact be used in any PL-I program. The functions may also be called
from FORTRAN programs or Assembly Language programs.

All the generating functions "sc¢ 2 technique originally proposed Ly
Tausworthe (1965) and described by Whittlesey (1968). From a starting
64-bit random number, the next number in the pseudorandom sequence is
generated by (CRing operations performed by the following machine code
(RANDUB is the 64-bit number):

IM 2,3, RANDUB

IR 4,2

IR 5,3

SLDL 4,1

XR 3,k

XR 2,3

IPR 2,2

ST™M 2,3, RANDUB
This procedure has the advantages of high speed (for a subroutine call),
minimum storage requirements, uniformity of distribution, and freedom

from systematic sequential dependencies.

CALL SETRND(DX);

DX is a two-word long configuration by which the user provides the
starting value for the generating sequence. If DX is greater than 0, it
is used as the initial value; if it is O or negative, the 64-bit generator

number is created from the current value of the computer’s clock. By

41

~40 -

this latter option, a program can be written to automatically generate a
new starting point every time it 1s run.

The generator number is initially set to a usable value, so 1t is
not necessary to use SETRND prior to using any of the following functions.

(Suitable starting numbers ought to have almost equal numbers of O and

1 bits.)
I = IRAND(J);
X = RAND(Y);
DX = DRAND(DY);
DX = DRANDM;

IRAND returns a binary integer between O and J-1, inclusively. J
must be a positive binary integer.

RAND returns a single word floating point number between O and Y--
which must be a positivé floating point number.

DRAND and DRANDM return double word floating point numbers. DRANDM
returns a value between O and 1, while DRAND returns a value between O
and DY, a double word floating point number. (Note. To conform to
FORTRAN's calling conventions, DRANDM must be invoked by a statement
such as CALL DRANDM(DX).)

DZ = SAVRND;,

SAVRND returns the double word number used in generating the pseudo-
random numbers in the functions above. By using SAVRND at the end of
one day's random number generation, it is possible to initiate the
generator with that value on the next run, via SETRND, thus continuing
with one long sequence of numbers. (In FORTRAN, SAVRND must be invoked

via CALL SAVRND(DZ).)

Other Functions

The rest of the functions described below are ones which deal with

cells and data storage in more detail. With the exception of the list

marking functions, the user should have few occasions to use them.

Cell information'retrieval functions.

INT = ID(PNTR);

INT - MARK(PNTR);
POINT = LNKR(PNTRg
POINT = LNKL(PNTR

H

>
I PNTR contains the address of any SLIP cell, these four functions

return the value from their particular portion’of the cell's links word.

POINT = CONTS(PNTR);

If PNTR contains the address of a SLIP cell, CONTS returns the address
of the cell's datum.

POINT = LINKS(PNTR);

If PNTR has the address of the datum of a cell, LINKS returns the

address of the cell. (LINKS and CONTS are opposites; CONTS returns

PNTR + 8 and LINKS returns PNTR - 8.)

INT = REFCNT(ILST);

REFCNT returns the reference counter value from the header of the

list named ILST.

Functions for altering celllinks field information.

CALL SETID(PNTR, INT);
CALL SETMARK(PNTR, INT);

SETID and SETMARK insert the value (modulo 256) of the binary integer

INT into the ID and MARK portions of the cell addressed by PNTR. Caution:

If one uses ID values other than 1-13 for list cells, most SLIP functions

will misinterpret or simply fail on such celils.

L4o-
CALL SETLNKR(PNTR, POINT);
CALL SETLNKL(PNTR, POINT);
SETINKR (SETLNKL) inserts the address contained in POINT into the
LNKR (LNKL) field of the cell addressed by PNTR. These functions should
also be used cautiously, since they directly alter the structure of the
list containing the cell.

CALL SETIND(PNTR, IDVAL, LINKL, LINKR);
CALL SETDIR(CELL, IDVAL, LINKL, LINKR);

These functions may be used to set the ID and/or the INKL and/or the
INKR fields of a SLIP cell. 1If one or more of the fields ére not to be
changed, the corresponding argument should be the binary integer -1 or the
pointer wvariable NULL. SETIND changes the cell addressed by PNTR; SETDIR

changes CELL itself.

CALL MRKISTS(LST, INT);

If IST names a list structure, MRKISTS sets the MARK portion of the
headers of IST and all its sublists to the value of INT (ggg 256). This
is often useful to reset the MARKs after a scanning or searching operation
has used header MARKs to remember which lists had been scanned. MRKLSTS
ignores description lists.

Miscellaneous functions.

INT = STRINTH(STRING);

If STRING is the name of any PL-I string variabie, STRLNTH returns its
current length as read from the Dope Vector. This function is usefully
different from the PL-I built-in function LENGTH only in the case of
strings defined as fixed length which have been treated by SLIP as vari-
able length.

PNTR = NEWCELL(DATM); N

44

N

43

If DATM is any allowable SLIP datum, NEWCELL creates a new cell con-
taining DATM and returns the address of the cell. The ID cf the cel% is
set to the proper value between 1 and 11; the MARK, LNKL, and LNKR fields
are O.

PNTR = MAKCELL(DATM, DATID);

This function actually does the work of obtaining new cells from AVSL.
DATM is stored in the cell and DATID is stored as the cell's ID. PNIR is
given the address of the new cell.

CALL RCELL(PNTR);

RCELL actually returns erased cells to AVSL. PNTR addresses the cell
to be returned, which can have an ID only between 1 and 11. RCELL simply
returns the cell; in particuwlar, it does not link other list cells around
the removed cell.

CALL INSERTR(PNTR, POINT);
CALL INSERTL(PNTR, POINT);

The cell addressed by POINT, which must not be part of a list, is

inserted to the right (left) of the list cell addressed by PNTR.
FLAG = COMPARE(DATL, DAT2, DATID);

COMPARE tests the equality of two SLIP data, both of ID type DATID,
and returns '1'B if they are equal or '0'B if they are not. DAT1 and
DAT2 must be the data themselves, not pointers to the data. Two strings
of unequal length are considered equal if they are equal for the common
length and if the longer is blank (for character strings) or O (for bit

strings) for the extra length; this is in accord with PL-I conventions.

CALL DSADUMP;
CALL LDUMP(VAR, INGTH, CODE);

45

k-

Both these functions are intended primarily as debugging functions.
They use the FORTRAN library function PDUMP; thus, to use them, the user
must include the FORTRAN library (FORTLIB) in the list of libraries avail-
able to the linkage editor and must define the standard FORTRAN output
file in the execution step (e.g., //CO-FT¢5F¢71 DD SYSOUT=A).

DSADUMP dumps the dynamic storage area of the program or subroutine
in which the calling statement is placed. This is often useful because
it gives the status of the 16 index registers at the time DSADUMP was
called and the values of all the dynamic-allocation variables in the pro-
gram or subroutine at the time of the call. (These are all unlabeled; the

user must have some knowledge of PL-I program organization and a program

object code listing to make sense of the dump.) The dump is in hexadecimal.

LDUMP dumps the section of core storage beginning with the variable
VAR and continuing for approximately INGTH bytes. LNGTH may be negative,
in which case VAR is the upper end of the dumped core. CODE is a binary
integer indicating the férm of the dump, according to the following table

(the parenthesized values are useless in a PL-I dump):

CODE Interpretation of data for output

Hexadecimal.
(1) Boolean, in byte chunks (T if at least one 1 in the
(2) Boolean, in word chunks. byte, F if all 0).
(3) Halfword binary integer.

Fullword binary integer.

FPullword floating point.

Double word floating point.

Fullword floating point, complex.
Double word floating point, complex.
Characters, 1 per byte.

s N

~~
W30V TV O

46

[P N

45-

The three arguments may be repeated any number of times, so that a
single call to LDUMP can produce dumps of different segments of core, dif-
ferent lengths, or different output formats.

Neither function terminates execution of the main program; thus they

may be used to print key areas of storage several times in a single run.

i

46—

Index of SLIP Functions

Name and Argument List Purpose Page
ADVSTR(RDR [, DATID][, FLAG]) advance reader structurally 29
ADVSTL (linearly) to the right (left)

ADVLNR

ADVINL

BOT (LST, DATM)
CELLNAM(PNTR)

CELLPNT(RDR)

COMPARE(DAT1, DAT2, DATID)

CONTS (PNTR)
COPYLST(ORGL, COPY)
COPYRDR(RDRL)
DATUM(PNTR, DATM)
DRAND(DY)

DRANDM
DSADUMP

EMTYLST(1ST)
ERASLST (IST)
ERASRDR(RDR)
ID(PNTR)
INITAS([INT])
INITRDR(RDR)

INSERTR(PNTR, POINT)
INSERTL

what is the list's bottom datum?
is the argument a cell's name?
to what cell does a reader point?

compare two data

what 1s the address of a cell's datum?

create a copy of a list structure
create a copy of & reader

what is a cell's datum?

random number (long floating point)

unit random number (long floating
point)

dump the program's dynamic storage
area

empty a list

erase a list

erase a reader_

what is a cell's ID value?
initialize the availablé space list
initialize a reader within its level

insert a cell to the right

(left) in a list

a8

20
Lo
Lo

L3

18
18
29
41
15
32
L3

Name and Argument List
IRAND(J)

ITSVAL(HOST, ATTR, ATID, VALU)
LDUMP(VAR, LNGTH, CODE)

LINKS (PNTR)

LIST{LST)

LNKL(PNTR)
LNKR

LOFRDR(RDR)

LSTEMTY (IST)

LSTNAME (1ST)
ISTSEQL(LST1, LST2)
LVLCNT (RDR)
LVLRVT(RDR)
LVLRVT1(RDR)
MAKCELL(DATM, DATID)
MAKDLST(HOST, DLST)
MARK(PNTR)

MOVER(LST1, IST2)
MOVEL

MRKLSTS (LST, INT)
NAMDLST (HOST)
NEWCELL(DATM)

NEWTOP(LST, DATM)
NEWBOT

47

Purpose
random number (long binary integer)
what is the attribute's value?
dump core segment by length

what is the address of the cell
dacum's links portion?

create (an empty) list

what is a cell's INKL (LNKR) value?

what is the list of a reader?
is a list empty?

is the argument a list name?
are two list structures equal?
what is the reader's level?
revert to the top level
revert one level back

create a new cell

make a description list

what is a cell's MARK value?

move a segment of a list to the
right (left) in another list

set the MARKs of the headers in
a list structure

what is the name of the description
list?

create a new cell

put a new datum at the top (bottom)
of a list

57

L2

1

Name and Argument List Purpose

NFWVAL(HOST, ATTR, ATID, NUVAL, VALID [, OLDVAL])
give the attribule a new value

NODILST (HOST) remove and erase the description list

NOVAL(HOST, ATTR, ATID [, VALU]) remove the attribute and its value

NUMBEL(LST) how many elements are on a list?
POPTOP(LST [, DATM]) pop the top (Lottom) cell from a list
POPBOT

PRNTLST(LST [, 'BREAK=x'][,'B'][, FILENAM]) print a list structure

PUTDATM(PNTR) print a cell and its datum

PUTLIST(LST) print a list structure in debugging
format

RAND(Y) random number (floating point)

RANDEL(IST) select a random list element

RCELL(PNTR) return a cell to AVSL

RDRNAME (RDR) is the argument a reader's name?

RDROF (LST) make a reader of a list

READLST(IST {, 'BREAK=x'l[, {'B' or 'T'}}[{, FILENAM])
read a list structure from stream

input
REED(RDR, DATM) what 1s the datum to which the reader
points?
REFCNT(IST) what is a list's reference counter?
REMOVE(PNTR [, DATM]) remove a cell from a list

REPLACE(PNTR, DATM [, DATID][, OLDDAT]) replace a datum cell
SAVRND save random number generator value

SEARCH({IST or RDR}, DATM, DATID [, PNTR])
search a list structure for a datum

S0

Pagel

36

20

2h
25
25

L0
38
L3
38
28

21

32

L1

20

19

33

-L4g-
Name and Argument List DPurpose
SETDIR(CELL, IDVAI, LINKL, LINKR) set the ID, INKL, and LNKR
SETIND(PNTR, IDVAL, LINKL, LINKR) of the argument (or the cell
addressed by the argument)
SETID(PNTR, INT) set the ID (ILNKL, MARK, or LNKR)
SETLNXL(PNTR, POINT) poriion of the addressed cell

SETMARK(PNTR, INT)
SETLNKR(PNTR, POINT)

SETRND(DX) set random number generator value
STRINTH(STRING) what is a string's length?
SUBTOP(LST, DATM [. DATID}[, OLDDAT])

SUBBOT substitute the top (bottom) data

cell on a list

TOP(LST, DATM) what 1s the top datum of a list?

Page

Wo

4

19

20

-50-

References

Johnson, T. S. SLIP--A symmetric list processor. Research Memorandum
No. 31. Chapel Hill, N.C.: L. L. Thurstone Psychometric Laboratory,
University of North Carolina, 1968.

Johnson, E. S., Rosin, R. F., & Leaf, W. A. SLIP~-A symmetric list
processor. Memorandum No. 62. New Haven, Conn.: Yale University
Computer Center, 1967.

Tausworthe, R. C. Random numbers generated by linear recurrence modulo

two. Mathematics of Computation, 1965, 19, 201-209.

Weizenbaum, J. Symmetric list processor. Communications of the

Association for Computing Machinery, 1963, 6, 52L4-536.

Whittlesey, J. R. B. A comparison of the correlational behavior of the

random number generators for the IBM 360. Communications of the

Association for Computing Machinery, 1968, 11, 641-64k.

52

| -51-

Appendiz A

Running a SLIP Program

Because SLIP is a set of library subroutines which are not stored on
the standard system library, a few changes in job control (JCL) cards must
be made.

1. In the link editor stage, the library must be revised from thc
usual SYSL.PLILIB to ithe fnllowing:

//LKED.SYSL.B DD DSNAME=SYS1.PL1LIB, DISP=SHR
// DD DSNAME=0CS .SLIPLIB, DISP=SHR

I either LDUMP or DSADUMP is being used, the FORTRAN library must be con-

catenated by a third card:

// DD DSNAME=SYS1.FORTLIB, DISP=SHR ‘
2. In the execution stage, one extra output file should be declared,

not only for SLIP but for any PL-I program in which an abnormal job termina-

tion might occur:

//GO.PL1DUMP DD SYSOUT=A

And, if LDUMP or DSADUMP is being vsed,

//GO . FT¢6Fg@L DD SYSOUT=A
One of the most time-consuming chores in writing SLIP programs is

de“ining, via a DECLARE statement, all tt.e SLIP functions one plans to use.

In order to avoid as much of this effort as possible, an external library has
been established with three different sets of function declarations: LISTS,
READERS, and DLISTS. The first; and most frequently used, defines the basic
list functions. This segment also contains a "CALL INITAS;" statement, so

that one need not write a separate call while using the first declaration.

o3

-50-

The second declaration defines all reader-connected functions, and the]
third defines the description list functions. The contents of these
segments, along with standard definitions for the SLIP functions not
covered by the library, are listed below.

To incorporate any or all of these definivion segments into the user's
program, one calls upon one of PL-I's preprocessor stafements--the
%INCLUDE statement.

At ETS, these segments exist on ETSLIB, in the partitioned data set
OCS.SLIPTXT. One must follow these sters in order to have access to them.

1. Include the following data definition card in the PL-I step:

//PLlL.SYSLIB DD DSNAME=0CS.SLIPTXT,DISP=SHR

2. In the option list for the PL-I job step, include the parameter
which will cause the preprocessor to be invoked (MACRO) along with whatever
other parameters are desired‘(e.g., LOAD,ATR,XREF). One may wish SOURCE2,
which will print the program as it appears after the preprocessor pass,
and also MACDCK, which will cause the same thing to be punched on cards.

3. 1In the program, preferably before any executable statements,
request the inclusion of the segmerts:

%INCLUDE LISTS, ﬁEADERS, DLISTS;
using all three segments or any two or one.

Note. If one wishes to redefine one of the functions included in one
of the library DECIARE segments (as, for example, to use TOP or BOT in
assignment statements--see pp. 18-19), it i1s not necessary to avoid using

the segment. Simply define the function as is appropriate to the program

in a DECIARE statement which precedes the $INCLUDE statement: PL-I will

o4

-55-

accept the first definition and ignore the one which comes later, although
the compiler will print & warning against multiple function definitions.

There is some cost to the user when he uses these preprocesscr segments.
First, the preprocessor stage takes some computer time. Second, and more
important, all of the functions defined are loaded from SLIPLIB into the
computer--whether the program will use them or not. In cases with programs
to be run once or twice, these costs may be tolerable. For longer runs,
this procedure seems to be the best compromise:

1. In the first run, use the MACDCK option along with MACRO; this
will cause to be punched a deck of the source program after the preproc-
essor run--i.e., in:luding the requested SLIPTXT segments.

2. For f.Sure runs, omit the MACRO and MACDCK options and run without
the preprocessor stage (unless the program requires it for other reasons).
5. Remove from the SLIPTXT cards the definition cards for the func-

tions either not used in the program or redefined in earlier declarations.

Yoy R

(LT

-

-5 -

The LISTS Text Segment

PMTOY (PIR,),

: ENT Y (DPTR) RETHRIS (BIT(1)),

2L ENIRY (,, FIXED BIN (31)) FIZURKS (LIT(1)),
TN EETRY (DTR) RLTORES (DPTR),

SUTYLS D FNTIY (PTR, PJIR) =BTURNS (PTE),

DTV IFNTEY (PT2,),

TLUYLG D FRTXY (PTR) RELUFNS (PTE),

Tl SLAT O INIRY (PTR) RITURNS (FIVEDR 2IN (21)),
TooowNTREY (PTR) RETUINS (FIXZD EBIN (21)),
TUNTIAS LETRY (RIXFD BIN (31)),

LIUKT IKTRY (PTR) PITHENS (PTR),

|
1
—
—
-t
e Yo} e —— it

Y L.t
~ -~
- TY
[Se B e
(2 2> =73

LTRT ORENTFIZ
p (IT3T1 SNTRY (PiRk) RETUNS (PTPR),
1L 02 =NPRY (FIXID BIN (31)) FiTIFIS (PTF),
1 LIZ13 ¥EIPY (FIXTD D:C (1)) ERETURNS (PTR)),

LLZLOINTRY (PTR) FEHTUENS (PTKR),

LVYKT NILY (PTR) RETURN: (PTR),

L7 Ty CNTRY (PTIR) RETHRNS (BIT(1)),

LeivaMs ENTRY (PTR) RETURNS (BIT(1)),

LEILTOL RNTHY (PTR, PTR) FEZTURNS (BIT(1)),

ALK ENTRY (PTR) RETURNS (FIXED EIN (21)), e

NTWROT GENERIC
(KE4R0TT SNIRY (PIE, FIXED BIN (15)) FETUZNS (P7R2),
NIWRBOTL TNTRY (PTR, FIXED BIN (31)) RRETURNS (PT?),
[2h307T2 cNTRY (PTR, TLOAT BIN (21)) LRITUSNS (PTR),
MIWBROTH RNTRY (PTP, FLOAT BIN (53)) PETUFNS (PTR),
NIWpQTE ENTRY (PIR, FIXED DEC (5)) REIUFNs (PTR),
VENTOTA SNTPRY (PT2, FIXID DREC (173)) RETUTNS (PTR),
NZIwPOT7 SNIRY (PTR, FLOAT DEC (%)) RETUFNS (PIR),
VENPOTE SNTPY (PTR, FLOAT DEC (16)) RETULNS (PTR),
NER DTS INTR2Y (PIF, CHRR (25€)) RITURNS (FIR),
NEWRTAR DNTRY (PTP, CHAR (25£) VAR) FITUPNS (PTIR),
¥IWl3T1T INTPY (PIR, 3IT (234¢)) RITURNS (LTR),
NO3T1CR EINTRY (PTR, RBIT (2748) VAR) RITUENS (PTR),
“IwhT11 INT?Y (PIR, 'FTE) EKETUENS (PTR)),

LaND GEFNEJIIC
(L.FWTOPT FNTFY (PTR, FIXED BIN (15)) RETUENS (PTR),
NI¥TOPZ TNTERY (P7R, FIXZD BIN (31)) RETURNS (PIR),
NEATOP3 INTEY (PIZR, FLCAT BIN (21)) RETURNS (PT2),
KIaTOPUW ZNTRY (PTR, FLCAT BIN (53)) EETURNS (PT¥),
NEWTOPE ENTRY (PIR, FIXED DIC (%)) RETUKNS (PTR),
NEWTOPH ENTRY (PIR, FIXED DEC (15)) RETURNS (PTR),
NEWTOP7 ENTRY (PTR, FLOAT DEC (6)) RETURNS (PTR),
HEWLOP2® ENTRY (PTR, FLOAT DEC (16)) RETURNS (PTIR),
Y2AdTOPS ENTLRY (PIR, CHAR. (256)) REIURNS (ETR),.
NFWTPGA ENTRY (PTE, CHAR (25€¢) VAR) RETUPRNS (PTR),
NEWTP1C 2INTRY (PTE, EIT (2248)) RZTUPNS (FTR),
NOTP1TA ENTRY (PZR, BIT (2354&) VA®R) RETU:NS (PTR),
ETWTPT1 TNTRY (PIR, FTR) RETURNS (PTR)),

)

POPLOT
pcpTop

FracuT

EBJ(; 2_¥CVC

INTRY (PTR,),

ENTPY (PTE,),..
INTCY (PTP) “=EINDNS
ENTHY (PIF,),

(FIXEL BIN (31)),

o6

&igpaca LNTRY (PTP, ,FIXFD BIN (31 ,),

3::rngx_£wiv (PTE, FIXED BIN (31,

STATOP TNTEY (PTP,, FIXED BIN (31)).
CTUD ENTPY (pTR,); o
CALL INITRS;

The READERS Text Segment

TICLMEE
AUVITY GLNDRIC
(LDVSTERT INTRY (PTR, FIXED BIE (31),BIT(1)) RITHPNS (PTP),
ADVSTRZ IZHTRY (PTR, RIT (1)) EETURNS (RTR), e e
ANVSTREY DNTRY (PTPR, FIX®D RBRIN (21)) RETUFNS (PTR),
LDVSTRU ENTRY (PTR) SETURNS (PTR)),

ACVETL GTHERIC

(4DVSTLT ANTRY (PTR, FIXZID BIN (31), 3IT(1)) XRTHUANS (PTR),
ADVSTLD ZUTRY (PTR, RIT (1)) RETURNS (PTR),

ATVSTL3 2NTRY (PTR, FIXZID BIN . (31)X) RETURNS (PTE),

ADVSTLa 2N ITRY (PTR) RITURNS (PTR)),

-

ALVING GRHIWIC :

(ADYLMEY HNTZY (PTR, FIXED BIN(21), BIT(1)) RITURNS (PIR),
ADVLNP2 INTRY (PIR, BIT(1)) _KETURNS (PTR),
EOVLNER TNTEY (PTPR, FIXED BIN (31)) RTTUENS (PTR),
ADVLNLW ENTRY (PIR) RETURNS .(PTR)), . o

ATVINLD GENTURIC

(ADYLNLT ZNTRY (PIR, FIXED BIN (31), BIT (1)) RITURNS (PTR),
SDVLNLZ ZNTRY (PLR, BIT (1)) ERETUENS (PTR™),

~LVLINL2 INTRY (PTR, FIXED BIN (31)) RETURNS (PTR),.
ADVLNLY SNTRY (PIR) RETURNS (FETR)),

CLLLPYI ZHTRY (PTR) RETURNS .(PTER), O
TOPYRDZ ENTRY (PTR) RETUBNS (PTER),

STASROD ENIRY (PTR) RETURNS (FIXED BIN (31)), Ce
TUIMEDE ENTZY (PTR) RETURNS (PTE),

Lop LT ZKETRY (PIR) ERAZTULNS (PTR), -
LYLCNT CRTRY (PTR) RETURNS (FIXED BTN (31)),

LVYLeV. ENTRY (PTR) RETURNS (PTR), : N re e e
LYLEV™T ENTRY (PTR) ®ITORNS (PTE),

MRECAME O ENTRY (PTE) 2ETURNS (BIT(1)),
CLEOF OUNTEY (PTR) RITURNS (PTR),

REIR OTUIRY (PTR,);

-56-

The DLISTS Text Segment

el Lid ™
TTSVAL ENTRY (PTR,, FIXID 3TN (31),),
“IKLLST RNTERY (pmn, PIR) TLIUINS (DTR),
NAMOLST ENTRY (PTH) ELITULNS (ITL)
HYWYAL RNTRY (PTP,, FIXZD BIN (31
LCODLST ENTRY (PTR) RITUERNS (PTEH),
LGVAL EXTYY (PTF,, FIXED 2IN (21),);

),, FINIZL BIN (31),),

The following declarations are not included on any SLIPTXT segment
because they represent functions which are used rarely--too infrequently
to justify keeping them present, occupying computer space, for every
program run. The declarations below arz the ones which ought to be

used if one does wish to call on the functions:

TTCLAFE

ZCLAFE DRANDY BITJURNS (FLOAT BIN (53));

MECLATE DSADUMP ENTERY;

LICLARE INSERTR ENTRY (PTR, PTE) ;-

DICTAYE INSERTL ENTRY (PTF, PIR);

DACLARE ISAND ENTOY (FIXZID BIN (31)) RETUENS (FIXIUD PIN
NICLFLE LDUMP ENT3Y (, FIXED EINK (31), FIXEL PIN (31));
DECLARF MAKCELL (, FIXED BIN (31)) RETURNS (PTR):
NICIATE MOVER ENTSY (PTR, PTR);

MOVEL .ENT XY . {PT&R, PTRI;: e e .

D.CLEPE MPKL3TS (PTP, ¥IXSD BIN (31));

SCLARE NZACELL GINERIC . _
(NEWCZILT ENT2Y (FIXED BIN (15)) RETURNS (PTR),
MIWCEL2 . ENTRY (FIXED BIN-(31)) RETURNS (PIR),
NFWCFEL3 ENTRY (FLOAT BIN (21)) RETURNS (PT®),

JECLLPE

DRAND ENT XY (FLOAT BIN (53)) RETUENS (FLOAT BIN (53));

(31));

NEWCELA .ZNTRY. (FLOAT BIN (53)) RETURNS (PI®),~ . .

NEWCFLS5 RNTRY (FIXED DEC (5)) EETURNS (PTEK),
MEWCEL6 ENTRY (FIXED_DEC (15)). EZTURNS (ETR),
NEWCEL?7 ENTRY (FLOAT DEC (6)) RRETURNS (PTER),
NEWCELB ZNTRY (FLOAT L[EC (16))_RETURNS (FTR), ..
NEWCZILQ® EZNTRY (CHAR (256)) RETUENS (PTR),

. NEWCLGR EZNTRY (CHAR _(256) VAR) BETURNS (D2TR2), __.

NEWCL1{ ENTRY (BTT (2048)) RETURNS (PTR),
FUCL1CA =ZNTEY (BIT (2048) VAR) RETURNS (rT2),
NEWCL11 ENTRY (PTR) HKETURNS (PTR));

(LENTLS
FPNTLS2
PRNTLE 3
EPUTLS L
IRNTLSS

PENTULSE
LLTLRTE
CTCT PR E
CLREE
SLat
ot oAU
e R] -
SCLalTk

(:._rbLe?

PTATLSZ

P22pLsS s

COArLsu

S ;‘.‘:; 1II.S 5

T CATDLSE
Cew Ll X
SEEVRERANE
e e -
e vl L
~g o
- S
JPATT

I

. -
.vL:’.l..’l
epoaroL
e L
v s -
O

NUMBEL
PRNTLS
INTRY
INTRY
INT Y
CNTEY
ENTLY
INTRY
PUTDAT
PUTLIH

EAND
PANRTL
FCEL

WIADLS
DNTZRY
TNERY
IHTkRY
TNTTY
INTERY
“HT: Y

SAVERND

SZARCH

SATDbIz

SITIND

SUTID ENTRY (PIK,

SETLNK

LSETLNK

SETRND

STRELNTH

-57-

ENTRY (PTR) RE
GENERIC
(prR}),
(PTR,
(PIR,
(p7e,

TUzNS (FIXED BIN (31));
T .

CHAR(1)),
CHAR(1), CHAR(1)),
FILE),
(PIR, CHAR (1), FILL),
(pTR, CHAK (1), CHa®R (1),
INTFY (PTR);
T SNIFY (PTR);
WTRY (FIO2T BIN (21)) TETUFWNS (FLOAT BIN (21));
T"NTEY (PTR) KETORNS (PTR);
ENT LY (PTC)
GTNFRIC
(pTR),
(rve,
(pIR,
(p7F,

FILE));
1

T
PS

CHAg (1)),
CHAR (1),
FILT),
(PR, CHAR(1), FILZ),
(pP™, UHAR (1), CHAR (1),
RZIURNS (FLOART PIN (53)):
ENTPY (PTR,, FIXEL RIN (31), PTE) RETURNS (BIT
TNIRY (, FIXID PIN (31), ETE, PTR);
LNIPY (PTR, FIXED BIN (31%), PTE, PTR);
FIXEZ EIN (31));
L ENTEY (PTR, PIR);
X INTKY (PTk, PIR);.

ENTRY
RLTUCNS (FIXECD RIN (31));

CH-’\I‘. (1))'

FILE));

(1))

39

-58-

Appendix B
SLIP Error Facilities

Although SLIP is a subroutine language operating within PL-I, the
PL-I diagnostics are generally unhelpful for locating an error in list
processing. There are two reasons for this: first, SLIP performs opera-
tions which are outside the realm of normal PL-I capabilities; and second,
SLIP subroutines take some liberties and violate some assumptions of PL-I
programming in being able to accomplish their ends.

The major violation of PL-I standards is in allowing argument lists
of variable length for the subroutine calls. While taboo in PL-I, vari-
able length argument lists are common to most other languages and have been
artificially preserved in SLIP. This allows the user much more flexibility
than fixed-length argument lists but makes most of PL-I's error messages
on argument lists inapplicable.

An advantage to PL-I is that its error messages have several levels of
severity. The philosophy seems to be to inform the user if he has made
a mistake but then allow his program to run as far as possible ariway.

This works ideally with SLIP, in which these "mistakes" are made quite
frequently and purpos;fully.

SLIP contains some brief error detec 1 facilities of its own. SLIP
attempts to keep the user's program running as long as possible and to
allow the user as much freedom as possible. There is only one condition
for which SLIP will terminate a program: lack of space, which makes it

impossible to create new cells. In all other cases, SLIP subroutines check

60

-59-

to make sure that ité list manipulations are actually being done to lisls:
if not, a warning is printed and execution continues without the acked-for
manipulation. These checks are intended to provide thc user with some
indication that his program may be misperforming and to prevent it from
doing something so wrong that the PL-I monitor will detect an error and
halt execution.

If the user's program is going very wrong, then repeatedly calls to
SLIP functinns will have invalid arguments and a great amount of computer
time might be wasted. To counteract this, SLIP counts the calls to its
error voutines. If the calls exceed a certain number (by default 50; it
may be set to any desired value, though, by including the value as an

argument to INITAS; see p. 15 above), execution is stopped, the following

error message is printed, and the standard PL-I error condition is raised:

*%x% STTP ERROR TALLY HAS REACHED nnnn. PROGRAM EXECUTION HAS BEEN
TERMINATED AT THIS POINT.

INITAS has two error messages to indicate that no more space could be
found for list storage and the program is therefore halted; these were
listed on p. 9.

Several functions require one or more list names as arguments. Because

they must perform manipulations based on the list names, they test this and

in general do nothing if they have been given nonnames. The following

error message is printed in such cases:

*%%¥% fname WAS CALLED WITHOUT A LIST NAME (OR NAMES) IN ITS ARGUMENT LIST.
*%%% THE FUNCTION EXITED WITHOUT DOING ANYTHING.

The name of the function is inserted in the first line. The functions

[}

which do this include COPYLST, EMTYLST, ERASLST, ITSVAL, LSTSEQL, MAKDLST,

61

\n

-60-

MOVER, MOVEL, MRKLSTS, NAMDLST, NEWVAL, NODLST, NOVAL, NUMBEL, PRNTIST,
PUTLIST, RANDEL, and RDROF.

Other functions have slightly different argument requirements, or
detect other types of errors. Their main comment lines, which appear

with a reminder that the function did nothing, are listed below:

ADVSTR

ADVSTL

ADVLNR REQUIRES THE NAME OF THE READER OF A VALID LIST IN ITS ARGUMENT

ADVINL LIST.

COPYRDR

ERASRDR

Bot WAS ASKED TO RETURN THE DATUM OF SOMETHING WHICH WAS NOT A SLIP

DATUM

) DATA CFLL.

TOP

ITSVAL

NOVAL WAS GIVEN THE NAME OF A LIST WITH NO DESCRIPTION LIST.

NEWBOT

NEWTOP REQUIRES A LIST NAME OR LIST CELL ADDRESS AS ITS FIRST ARGUMENT.

NEWTOP

IF THE DATUM TO BE ADDED TO THE LIST IS A POINTER VARIABLE, ¢ NEWBOT) REQUIRES

IT TO BE A SUBLIST NAME. NEWCELL

POPBOT

POPTOP ; WAS ASKED TO ERASE SOMETHING WHICH WAS NOT A SLIP DATA CELL.
REMOVE

PUTDATM REQUIRES THE ADDRESS OF A SLIP CELL AS ITS ARGUMENT.

READLST COULD NOT FIND THE START OF A LIST WITHIN 240 CHARACTERS.
READLST FOUND SOME CHARACTERS WHICH COULD NOT BEGIN A LIST.

SEARCH REQUIRES THAT ITS FIRST ARGUMENT NAME A LIST OR A READER.

c
S Umeop WAS ASKED TO SUBSTITUTE A NEW DATUM IN PLACE OF SOMETHING WHICH
REPLACE WAS NOT A SLIP DATA CELL.

62

-

-61-

Appendix C
Subtle Features of PL-I(F)

For the average usér of PL-I and SLIP, it is adequate to know the
information presented to this point. For the user who may wish to attempt
things slightly outside the normal applications of SLIP, and for the user
who reads and is concerned with the PL-I compilation error messages which

commonly accompany SLIP, the following section is intended.

Function and Subroutine Conventions

PL-T almost follows standard 0S conventions in the way it sets up and
manipuletes function calls and argument lists. By convention, the argument
list of a function is represented by a string of word-long addresses which,
in order, point to the actual first, second, etc. arguments to the func-
tion. This address string is in turr addressed by the value in General
Register 1 (out of 16, numbered O through 15). Because 0S allows variable-
length lists of arguments, there is normally a flag set in the last address
in the list to indicate that it is the address of the last argumernt; this
flag is =imply a minus sign--i.e., the first bit in the last address is 1.

PL-T sets up its argument list in the same way. Although PL-I does
not "allow" variable-length argument ists, and thus has no need for
flagging the last argument address, PIL-I does flag the address in order
to be consistent with 0S conventions.

There are two differences, however. If a FORTRAN function, for example,
is to return a value, the function leaves the value in a conventional spot
and the calling program retrieves it. Since PL-I may return anything

which is a valid data type, PL-I can't reserve a conventional spot

63

-62-

sufficiently flexible to accept any return value. Therefore, PL-I arti-
ficially takes the recipient of the function's value and makes it the final
argument to the call. This is why, for example, the normal call for TOP
(e.g., CALL TOP(LST, DATM);) can be redefined so that DATM = TOP(LST); is
acceptable. Both statements generate a call to TOP which appears to have
two arguments.

The second difference appears to be a compiler error, but one requir-
ing enough coincidences that it is unlikely to bother the user. Because
of SLIP's non-PL-I treatment of arguments, however, program errors due to
this are extremely hard to detect and the problem deserves description.

Under certain circumstances, PL-I will flag an address which is not
the final argument address; this makes it appear that the argument list is
shorter than it actually is. This may happen if the function call comes
from within a subroutine and the final parameter to the subroutine is a
nonfinal argument in the function call. For example:

DUMMY: PROG (VAR, VARY);

CALL VERYDUM(VARY, X, Y, Z);

END DUMMY;
In coding the call to VERYDUM, PL-I uses the address of VARY as taken from
the argument 1ist to DUMMY. Since VARY was the last argument to DUMMY, its
address was flagged; PL-I does not remove the flag before putting the
address into VERYDUM's argument list.
If VERYDUM is a function Qhose operation depends on the number of
arguments it thinks it receives, it will operate not as intended since it

will find it has only one argument.

-65-

Many SLIP functions count their arguments and respond differently [ov
dilferent numbers of arguments. They havce been programmed around this

compirer quirk for their own calls to other SLIP functions, bat the user

can run into this problem if he writes subroutines which call SLIP func-
tions.

SLIP uses variable length argument lists in two ways: first, by
allowing certain arguments to be dropped from the list if they are unwanted
(e.g., CALL PRNTLST(LST, 'BREAK=.', OWNFILE); vs. CALL PRNTLST(LST);): and

second, by letting functions return values or not (e.g., CALL ERASLST
(1ST); vs. ICOUNT = ERASIST(LST);). PL-I does not allow such things, and
it objects during compilation with different degrees of severity:

1. CALL ERASIST(IST); and ICOUNT = ERASLST(LST); PL-I codes both

correctly and issues no warning; PL-I seems completely blind to this kind

of violation. PL-I will object, however, if the function is to return a
data type not compatible with the recipient: RANDEL normally returns a
pointer value; the incompatible INT = RANDEL(LST); would be rejected,
although it would be fine if RANDEL was defined as returning a fixed

binary number.

2. DCL COPYLST ENTRY(PIR, PTR) RETURNS (PTR); and COPY = COPYLST

(ORGL); The call will be coded as written, which is acceptable to COPYLST,
and the following severe error message will appear:

IEMOT87I INCORRECT NUMBER OF ARGUMENTS FOR FUNCTION zzzz IN STATEMENT
NUMBER xxx

%. COPY = COPYIST(ORGL, COP); and COPY = COPYLST(ORGL); Both

statements will be coded as written but this warning will be printed:

65

—6l-
IEMOT7911I NUMBER OF ARGUMENTS FOR zzzz STATEMENT NUMBER xxx INCONSISTENT
WITH NUMBER USED ELSEWHERE

5. Incorrect matching of argument attributes with parameter attribute
definitions. For normal functions, this combination will result in a data
conversion if possible or, if not, statement deletion: DCL SETID ENTRY
(PTR, FIXED BIN (31)); and CALL SETID(LST, X); 1If X is a float decimal,
for example, conversion wil. . take place. For generic functions, an
attribute mismatch will terminate compilation.

6. Generic functions. From Appendix A, it is apparent that SLIP
nses generic functions extensively. Generic functions allow the user to
specify only the generic name in his program and have the compiler auto-
matically select the proper entry. Such functions allow greater flexibility
and power in the writing of the subroutines. 1In functibns like NEWTOP
(pp. 19 and 5&), for example, the entry poini tells NEWTOP the type of
datum to be put in a SLIP cell.

Generic functions are also extremely unforgiving. One must specify
completely all the arguments' attributes and the return attributes, if
any (although even generic functions don't care if the executed statement
requires a returned value or not). And if attribu?es in the declaration
don't match the attribute in the calling statement; compilation is termi-
nated rather than data conversion attempted.

For numeric data, precisions must match perfectly: if NEWTOPL requires
a second argument with FIXED BIN (15) attributes, an argument with FIXED
BIN (14) attributes will cause termination, even though both types of

AN

variables have the same physical representation.

_':]j—

For string data, the length of the string is not coneidered in Ui
matching. Although NEWLOPY is declared with 1 second argument whose atlri-
vates are CHAR (296), a rixed length cheracter string of any lencth wil
satisty the requirements. No siring of varying length will, however;

thus the parallel entry NEWIPUA.

Based Variables and Dope Vectors

Baced variables consist of a (potentially existing) variable and a
pointer which addresses the location of the variable. Based variall..u
exist wnly when the po.nter has been given a valid address, either thimurh
an ALLOCATE statemcent or by ar assignment statement or subroutine call

which gives the pointer some value. For SLIP, based variables tend to o

quite useful as a means of gaining access to list information. For example.

it the declaration DCL DADDR PTR BASED (DPOINT); exists and CALL LIST

(DPOINT); is executed, DADDR is the LNKL address of the hecader of the list

(blus the ID, which does not interfere with the address potential of DADDX).

Ruged variables which are scalars without Dope Vectors are uncompli-

cated; if the base pointer variable contains an address, then the variable
.
is seen as being at that location.

Based variables which have Dope Vectors, such as strings and arrays,
are more complicated. This is primarily because the base pointer, which
addresses the variable, and the Dope Vector pointer, which addresses the
variable, usually do not hold the same value. X

For arrays, the Dope Vector consists of the virtual address of the

array clement vwhose subscripts are all O and multipliers for determining

the location of any element given its subscripts. This virtual address is

66~

usually outside the physical limits of the array. For a based array, the
base pointer contains the address of the first actual storage location for
the array, regardless of its subscripts. Whenever the array is referenced
a dummy Dope Vector is created with its address derived from the pointer's
value to reference the O-subscript element.

Bassed string variables may not have the VARYING attribute because of
the way PL-I deals with based string Dope Vectors. There is a single
dummy Dope Vector, even though the string may have bzen ALIOCATEd into
any number of locations. In normal string manipu.ations, PL-I needs the
address of the Dope Vector, which indicates where and how long the string
is. In based string manipulations, the base pointer contains the address
of the start of the string itself, rather than the address of the Dope
Vector. For each manipulation, PL-I creates a Dope Vector from the base
pointer and the dummy Dope Vector, which contains only length information.

Because of this, it is somewhat difficult to retrieve a string datum
from a list ceil by means of based variables. If VSTR is a variable-length
string, CELLAD is the address of a string-holding cell, PNTR is a pointer
variable, and DADDR is a pginter and DSTR is a based string both with
DPOINT as their base pointer, the following code would succeed:

PNTR = CONTS(CELLAD);

DPOINT = CONTS(PNIR);

VSTR = SUBSTR(DSTR, STRLNTH(PNTR- > DADDR));
On the other hand, this SLIP code would succeed also:

CALL DATUM(CELLAD, VSTR);

FaS

..6'{' -

Appendix D
A SNOBOL-Tike Function in PL-I

FL\ - SNOSCAN(variable number of character string argunents)

SNOSCAN does not strictly belong in a discussion of SLIP functicns,
but .s ircluded here because it was developed in conjunction with the SLIP
cffort nnd because it represcnts another facet of the attempt to make PL-1
an even more general language.

SNOSCAN is intended to perform the najor string manipulating functions
uf SNOBOL. and its syntax and abilities are adapted directly from SNOBOL
to PL-I. Arguments to SNOSCAN are all character strings, and should
general ly be of varying lengtn; they fall into four general categories:

1. The first argument is the string to be scanned (STR)-

2. The second arguments are pattern strings or variable st.rings to
be matched in STR. These arguments are optional and may be omitted.

3. The third argument is the string (of length 3) '"="'. It is
optional alsoj; if it is omitted, arguments of the fourth type are also
omitted.

L. The fourth arguments are strings to be substituted in STR for
the substring of STR successfully matched by the Type 2 arguments.

Briefly, SNOSCAN allows a string STR to be scanned for particular
patterns; the part of STR which is matched may be left alone,'may be
deleted, or may be replaced by another set of patterns. SNOSCAN returns
"1'B if all parts of the scan are successful; it returns '0O'B if any part
fails, although depending on the part that failed some or all of the

string arguments may be successfully modifiec.

-68-

I. Pattern matching. The first part of SNOSCAN tries to find a
substring of STR which matches the concatenation of the Type 2 arguments.
(If there are no Type 2 arguments, the match is deemed successful with the
matched substring all of STR.) Type 2 arguments may be either patterns
or variables:

A. Patterns are nonnull strings of characters to be matched in
STR. Patterns may have optionally an explicit Position, which says that
the match can be successful only at a given distance from the start of
STR. (This corresponds to ANCHOR mode in SNOBOL.) The Position, if
explicit, is indicated by "xxx" at the start of the pattern; xxx is an
unsigned string of decimal characters; there may be any number of characters
in xxx. "1" corresponds to the first character in STR. (The match
attempted begins with the first character after the Position indicator.

If the user wishes to match a pattern which begins with the double quote

" mnn
.

, he should repeat it: The first one is ignored in the scan.)

Sample patterns:
' ABCDEF'
' DYNAMITE '
""53" DYNAMITE '
t'""'23 SKIDDOO"!
"""RATS," CRIED CHARLIE BROWN.'
The second and third patterns are identical except that the third requires
a match starting at the 53rd character of STR. Note in the fourth and fifth
patterns that only an initial double quote must be doubled; later ones are
interpreted properly.

B. Variables are null strings which will be given nonnull

length and values if the scan is successful. Variables are useful for three

-69-

main purposes: assigning a value to a variable, skipping an unimportant
portion of STR between two substrings which must be matched exactly, and

looking for repeating patterns in STR via the backreferencing-feature of

SNOSCAN.

Variables may have optionally a Position, as for patterns, and a
Length; thus a variable may not really be a null string: the important
point is that it is null after any Position or Length specifications.
Position is indicated as it was for patterns; Length is shown in the sawme
way. Pcsition always precedes Length; if one wants to indicate only
Length, the Pgsition number may be replaced by a single nonnumeric
character (not ").

Sample variables:

tt
[] 1!57111

TISTLS"
rn ""15"'
TXTr10352"!
The second example specifies a position in STR at which it must begin; the
third example also specifies that th& variable must be exactly 15 characters
long. The fourth example specifies Length but not Position, as does the
fifth. The {ifth also points out the fact that stfings may be up to the
maximun allowed by PL-I.
SeversaT™$imple examples will illustrate the kinds of pattern matching
SNOSCAN can do:
FLAG = SNOSCAN(STR, A); (A is a pattern.) The string STR is searched

for a substring (which may be all of STR) equal to A. If A has an explicit

Position indicator, the match will be attempted only at the proper offset

-70-

in STR; otherwise the match will be tried at all positions, starting at

the left end of STR.

FLAG = SNOSCAN(STR, A, B); (A, B are patterns.) A match for A is
looked for as described above. If successful, the next substring of STR
is compared to B.

FLAG = SNOSCAN(STR, X); (X is a variable.) X 1is set equal to STR.
If X has Position or Length restrictions, it is set equal to the specified
substring.

FLAG = SNOSCAN(STR, X, X); (X is a variable.) SNOSCAN tries to find
a repeating substring in STR, starting with the beginning of STR (unless
X has an explicit Position, in which case X could only end up null),
subject to any Length indicator in X. If successful, X is set equal to
that substring; if nct, X is made null and SNOSCAN still succeeds.

FLAG = SNOSCAN(STR, X, A); (A is a pattern; X is a variable.) STR
is searched for A; if successful, X is made equal to the portion of STR
from the beginning up to the beginning of A. (SNOSCAN fails if there is
any contradiction of explicit Length or Position with what is actually
found.)

FLAG = SNOSCAN(STR, A, X); (A is a pattern; X is a variable.) As
in the previous example, except X is made equal to the substring of STR
after the end of A.

FLAG = SNOSCAN(STR, A, X, B); (A, B are patterns; X is a variable.)
STR is searched for A and the portion of STR after A is searched for B; if
successful, X is made equal to'the substring of STR between A and B.

FIAG = SNOSCAN(STR, A, X, B, X); (A, B are patterns; X is a variable.)

[ERJ!:‘ STR is searched for A, the portion of STR after A is searched for B, and

-

-71-

the portion »f STR after B is searched (in ANCHOR mode) for the substiring
of 5TR between A and B. 1f all is successful, X is set to the value i
that intermediate substring. This demonstrates the backreferencing
feature. There may be any number of refercnces to the same variable in a
single call, and there may be any number of variables which are back-
referenced in a single call.

IT. Substitution. 1In all the examples considered up to now, 3NOSCAIL]
has only been asked to see if STR contains a particular pattern--although
the specification of that pattern can become quite complex. By using the
Type 5 argument "=", with or without Type 2 or Type 4 arguments, it is
possible to change the value of STR.

Type ¢ argunents serve to mark out the portion of STR to be modified.
If no Type 2 arguments are present, all of STR is to be changed.

Type 4 arguments give the value of the character segment which will
be inserted in place of the part of STR to be changed. If no Type 4
arguments are present, the part of STR to be changed is simply deleted.

It 1s possible to reuse some of the Type 2 arguments as Type 4
arguments in the same call. Variables which had to be matched are given
their final value at the end of the scanning portion of SNOSCAN, so that
they may be used to replace part of STR.

E.g., FLAG = SNOSCAN(STR, A, B, '"="', B, A); (A, B are patterns.)
This, if successful, simply interchanges two portions of STR.

FIAG = SNOSCAN(STR, X,'"="', X); (X is a variable.) This sets X
equal to STR (assuming no explicit Position of Length indicators) and

replaces STR by itself.

-T2-

SNOSCAN is intended to modify strings; therefore a few words of
caution are in order.

1. One is best off using variable length strings if they are going
to be changed by SNOSCAN. PL-TI does not assume it knows the length of
such_strings, as it does with fixed length ones, and looks up the length
each time. Also, SNOSCAN resets the length of strings it modifies; this
could be hazardous if the string is really fixed length--SNOSCAN has no way

of telling them apart at execution time.

2. Make sure the strings are of adequate length. With one exception,
SNOSCAN fails as soon as it tries to substitute a character string that is
too long for the maximum length of its destination string. The exception
is in modifying STR itself. If SNOSCAN has succeeded up to the point of
changing STR (the last thing it does), it will modify STR up to its maximum
length and throw away the rest of the characters it was supposed to put
in STR. Instead of returning '1'B, SNOSCAN will return 'O'B to indicate

that something went less than perfectly.

